E- and M-functions: concordance and divergence

Boris Adamczewski based on joint works with Colin Faverjon

CNRS, Institut Camille Jordan, Lyon

Atelier E-fonctions, G-fonctions et périodes, IHP, 2023

E- and M-functions

Definition (Siegel 1929)

 $f(z) \in \overline{\mathbb{Q}}[[z]]$ is an *E-function* if there exist $p_0(z), \ldots, p_m(z) \in \overline{\mathbb{Q}}[z]$, not all zero, such that

 $p_0f(z) + p_1f'(z) + \cdots + p_mf^{(m)}(z) = 0$

and the coefficients of f(z) satisfy some arithmetic conditions.

Definition (inspired by Mahler 1929) $f(z) \in \overline{\mathbb{Q}}[[z]]$ is an M_q -function if there exist $p_0(z), \ldots, p_m(z) \in \overline{\mathbb{Q}}[z]$, not all zero, such that $p_0f(z) + p_1f(z^q) + \cdots + p_mf(z^{q^m}) = 0$.

The parameter $q \ge 2$ is an integer.

Examples. Important functions occurring in mathematics and physics: exp(z), sin(z), cos(z),

$$J_0(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2 2^{2n}} z^{2n},$$

and (some) hypergeometric functions.

Examples. Functions related to combinatorics and computer science:

$$\sum_{n=0}^{\infty} z^{q^n} , \prod_{n=0}^{\infty} \frac{1}{1-z^{q^n}} , \sum_{n=0}^{\infty} s_q(n) z^n ,$$

and the generating series of the sequences produced by finite automata.

Analytic beviour

An *E*-function:

• is an entire function.

An M-function:

- is analytic in some neighborhood of zero and meromorphic inside the open unit disc.
- is either rational or has the unit circle as a natural boundary (Randé, 1992).
- cannot satisfy an algebraic differential equation, unless it is rational (A., Dreyfus, and Hardouin 2021).

Remark

A \star -function is either rational or transcendental.

Motivation

The theory of *E*-functions is based on examples.

- The amazing results from the 19th century concerning the exponential function, leading to the transcendence of e, π , log 2, and to the impossibility of squaring the circle.
- The results of Siegel concerning the Bessel functions.

The study of *M*-functions is mainly motivated by old problems concerning the complexity of integer base expansions of real numbers (É. Borel, Turing, Morse-Hedlund, Hartmanis-Stearns, Furstenberg...).

- P1 What can be said about the complexity of the decimal expansion of $\sqrt{2}$, π , *e* or log 2?
- **P2** Is it possible for a real irrational number to have a simple expansion both in base 2 and 3?

Achieving such goals requires the most general results of this theory!

The algebraic relations over $\overline{\mathbb{Q}}$ between the values of *-functions at algebraic points have a functional origin: they are governed by the algebraic relations over $\overline{\mathbb{Q}}(z)$ between these functions.

One studies linear systems of the form:

 $oldsymbol{Y}'(z) = A(z)oldsymbol{Y}(z)$ with $A(z) \in \mathcal{M}_n(\overline{\mathbb{Q}}(z)).$

A point α is regular if the matrix A(z) is well-defined at α .

One studies linear systems of the form:

 $oldsymbol{Y}(z^q) = A(z)oldsymbol{Y}(z)$ with $A(z) \in \operatorname{GL}_n(\overline{\mathbb{Q}}(z)).$

A point α is regular if, for all $k \gg 1$, the matrix

 $A_k(z) := A(z^{q^{k-1}})A(z^{q^{k-2}})\cdots A(z)$

is well-defined and invertible at α .

Remark

An *E*-system has only finitely many singularities, while an *M*-system can have infinitely many singularities. However, it has only finitely many singularities on each compact subset of the open unit disc.

Theorem

Let $f_1(z), \ldots, f_m(z) \in \overline{\mathbb{Q}}[[z]]$ be *-functions that form the entries of a solution vector of a linear *-system. Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$ be a regular point. Then

 $\operatorname{degtr}_{\overline{\mathbb{Q}}}(f_1(\alpha),\ldots,f_m(\alpha)) = \operatorname{degtr}_{\overline{\mathbb{Q}}(z)}(f_1(z),\ldots,f_m(z)).$

- First proof by Shidlovskii (1956) using Siegel's method.
- Second proof by André (2000) using the theory of *E*-operators.

- First proof by Ku. Nishioka (1990) using Nesterenko's approach.
- Second proof by A. & Faverjon (2020) using the pioneering ideas of Mahler.
- Proofs also work in *p*-adic settings and over F_q(t) (Fernandes, 2018).

Remark

The Galois theories associated with linear differential/difference equations provide tools to compute the value of $\operatorname{degtr}_{\overline{\Omega}(z)}(f_1(z), \ldots, f_m(z))$.

Theorem

Let $f_1(z), \ldots, f_m(z) \in \overline{\mathbb{Q}}[[z]]$ be *-functions that form the entries of a solution vector of a linear *-system. Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$ be a regular point. Then

 $\operatorname{degtr}_{\overline{\mathbb{Q}}}(f_1(\alpha),\ldots,f_m(\alpha)) = \operatorname{degtr}_{\overline{\mathbb{Q}}(z)}(f_1(z),\ldots,f_m(z)).$

Equations of order 1.

 If f(z) is a transcendental *-function of order 1, then f(α) is transcendental if α is regular and f(α) = 0 otherwise.

Maximal transcendence degree.

 If degtr_{Q(z)}(f₁(z),..., f_m(z)) = m, then f₁(α),..., f_m(α) are algebraically independent if α is regular and linearly dependent otherwise.

Generic behaviour.

• Let $f_1(z), \ldots, f_r(z)$ be algebraically independent \star -functions. Then they take algebraically independent values at almost all algebraic points.

Qualitative result

Lifting Theorem

Let $f_1(z), \ldots, f_m(z) \in \overline{\mathbb{Q}}[[z]]$ be *-functions that form the entries of a solution vector of a linear *-system. Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$ be a regular point. Then for every homogeneous $P \in \overline{\mathbb{Q}}[X_1, \ldots, X_m]$ such that $P(f_1(\alpha), \ldots, f_m(\alpha)) = 0$, there exists $Q \in \overline{\mathbb{Q}}[z, X_1, \ldots, X_m]$, homogeneous in X_1, \ldots, X_m , such that

$$Q(z, f_1(z), \dots, f_m(z)) = 0$$

$$Q(\alpha, X_1, \dots, X_m) = P(X_1, \dots, X_m).$$

- First proof by Beukers (2006) using the theory of *E*-operators.
- Second proof by André (2014) derived from the quantitative statement.

- First proof by Philippon (2015) (and A. & Faverjon, 2017) derived from the quantitative statement.
- Second proof by Nagy and Szamuely (2020) "à la André".
- Third proof by A. & Faverjon (2020) using the pioneering ideas of Mahler.

Theorem

Given a \star -function f(z) and an algebraic point α , there exists an algorithm that determines whether $f(\alpha)$ is algebraic or transcendental.

• A. & Rivoal (2018)

• A. & Faverjon (2018)

A $\frac{d}{dz}$ -algebraic relation between $f_1(z), \ldots, f_r(z)$ is an algebraic relation over $\overline{\mathbb{Q}}(z)$ between these functions and their successive derivatives.

A σ_q -algebraic relation between $f_1(z), \ldots, f_r(z)$ is an algebraic relation over $\overline{\mathbb{Q}}(z)$ between these functions and their successive images by $\sigma_q : z \to z^q$.

General Lifting Theorem

Let $f_1(z), \ldots, f_r(z)$ be \star -functions. Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$ be such that these functions are well-defined. Then any homogeneous algebraic relation over $\overline{\mathbb{Q}}$ between $f_1(\alpha), \ldots, f_r(\alpha)$ is the specialization of a homogeneous \star -algebraic relation over $\overline{\mathbb{Q}}(z)$ between $f_1(z), \ldots, f_r(z)$.

• For each $f_i(z)$, consider an *E*-system associated with an *E*-operator.

Take the direct sum of these systems and apply the lifting theorem.

 For each f_i(z), one can construct an *M*-system regular at α and involving only f_i(z), f_i(z^q),... Take the direct sum of these systems and apply the lifting theorem.

Descent Theorem

Let $f_1(z), \ldots, f_r(z)$ be \star -functions with coefficients in a number field K. Let $\alpha \in K \setminus \{0\}$ be a point where these functions are well-defined. Then

 $\operatorname{Lin}_{\overline{\mathbb{Q}}}(f_1(\alpha),\ldots,f_r(\alpha))=\operatorname{Span}_{\overline{\mathbb{Q}}}(\operatorname{Lin}_{\mathcal{K}}(f_1(\alpha),\ldots,f_r(\alpha))).$

Corollary

Let f(z) be a \star -function with coefficients in a number field K. Let $\alpha \in K \setminus \{0\}$ be a point where this functions is well-defined. Then either $f(\alpha)$ is transcendental of $f(\alpha) \in K$.

In the case of *M*-functions and $K = \mathbb{Q}$, this result has an important consequence concerning the complexity of the integer base expansions of algebraic numbers (Problem P1).

Divergence: algebraic relations at different points

To study the algebraic relation between $f_1(\alpha_1), \ldots, f_r(\alpha_r)$, it is sufficient to consider the algebraic relations between the values of the *E*-functions $f_1(\alpha_1 z), \ldots, f_r(\alpha_r z)$ at z = 1.

This more general problem rests on the previous theory!

Let \mathcal{E}_{α} be the smallest field generated by all the values of *E*-functions evaluated at α .

If α and β are two non-zero algebraic numbers, then

 $\mathcal{E}_{\alpha} = \mathcal{E}_{\beta} =: \mathcal{E}$.

To study the algebraic relations between $f_1(\alpha_1), \ldots, f_r(\alpha_r)$, one has to develop Mahler's method in several variables.

Indeed, if f(z) is an *M*-function and $\alpha \in \overline{\mathbb{Q}}$, then $f(\alpha z)$ is usually not an *M*-function!

Let \mathcal{M}_{α} be the smallest field generated by all the values of *M*-functions evaluated at α .

Theorem

If α and β are multiplicatively independent algebraic numbers, then \mathcal{M}_{α} and \mathcal{M}_{β} are free over $\overline{\mathbb{Q}}$.

Conjecture

For all $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$, the fields \mathcal{E} and \mathcal{M}_{α} are free over $\overline{\mathbb{Q}}$.