E - and M-functions: concordance and divergence

Boris Adamczewski
based on joint works with Colin Faverjon
CNRS, Institut Camille Jordan, Lyon

Atelier E-fonctions, G-fonctions et périodes, IHP, 2023

E - and M-functions

Definition (Siegel 1929)

$f(z) \in \mathbb{\mathbb { Q }}[[z]]$ is an E-function if there exist $p_{0}(z), \ldots, p_{m}(z) \in \overline{\mathbb{Q}}[z]$, not all zero, such that

$$
p_{0} f(z)+p_{1} f^{\prime}(z)+\cdots+p_{m} f^{(m)}(z)=0
$$

and the coefficients of $f(z)$ satisfy some arithmetic conditions.

Examples. Important functions occurring in mathematics and physics: $\exp (z), \sin (z), \cos (z)$,

$$
J_{0}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{2 n}} z^{2 n},
$$

and (some) hypergeometric functions.

Definition (inspired by Mahler 1929) $f(z) \in \overline{\mathbb{Q}}[[z]]$ is an M_{q}-function if there exist $p_{0}(z), \ldots, p_{m}(z) \in \overline{\mathbb{Q}}[z]$, not all zero, such that
$p_{0} f(z)+p_{1} f\left(z^{q}\right)+\cdots+p_{m} f\left(z^{q^{m}}\right)=0$.
The parameter $q \geq 2$ is an integer.

Examples. Functions related to combinatorics and computer science:

$$
\sum_{n=0}^{\infty} z^{q^{n}}, \prod_{n=0}^{\infty} \frac{1}{1-z^{q^{n}}}, \sum_{n=0}^{\infty} s_{q}(n) z^{n}
$$

and the generating series of the sequences produced by finite automata.

Analytic beviour

An E-function:

- is an entire function.

An M-function:

- is analytic in some neighborhood of zero and meromorphic inside the open unit disc.
- is either rational or has the unit circle as a natural boundary (Randé, 1992).
- cannot satisfy an algebraic differential equation, unless it is rational (A., Dreyfus, and Hardouin 2021).

Remark

A \star-function is either rational or transcendental.

Motivation

The theory of E-functions is based on examples.

- The amazing results from the 19 th century concerning the exponential function, leading to the transcendence of $e, \pi, \log 2$, and to the impossibility of squaring the circle.
- The results of Siegel concerning the Bessel functions.

The study of M-functions is mainly motivated by old problems concerning the complexity of integer base expansions of real numbers
(É. Borel, Turing, Morse-Hedlund, Hartmanis-Stearns, Furstenberg...).

P1 What can be said about the complexity of the decimal expansion of $\sqrt{2}, \pi$, e or $\log 2$?

P2 Is it possible for a real irrational number to have a simple expansion both in base 2 and 3 ?

Achieving such goals requires the most general results of this theory!

Main motto

The algebraic relations over $\overline{\mathbb{Q}}$ between the values of \star-functions at algebraic points have a functional origin: they are governed by the algebraic relations over $\overline{\mathbb{Q}}(z)$ between these functions.

Linear systems and singularities

One studies linear systems of the form:

$$
\boldsymbol{Y}^{\prime}(z)=A(z) \boldsymbol{Y}(z)
$$

with $A(z) \in \mathcal{M}_{n}(\overline{\mathbb{Q}}(z))$.

A point α is regular if the matrix $A(z)$ is well-defined at α.

One studies linear systems of the form:

$$
\boldsymbol{Y}\left(z^{q}\right)=A(z) \boldsymbol{Y}(z)
$$

with $A(z) \in G L_{n}(\overline{\mathbb{Q}}(z))$.

A point α is regular if, for all $k \gg 1$, the matrix

$$
A_{k}(z):=A\left(z^{q^{k-1}}\right) A\left(z^{q^{k-2}}\right) \cdots A(z)
$$

is well-defined and invertible at α.

Remark

An E-system has only finitely many singularities, while an M-system can have infinitely many singularities. However, it has only finitely many singularities on each compact subset of the open unit disc.

Quantitative result: Equality of transcendence degrees

Theorem

Let $f_{1}(z), \ldots, f_{m}(z) \in \overline{\mathbb{Q}}[[z]]$ be \star-functions that form the entries of a solution vector of a linear \star-system. Let $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$ be a regular point. Then

$$
\operatorname{degtr}_{\overline{\mathbb{Q}}}\left(f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)=\operatorname{deg}^{\operatorname{tr}} \operatorname{T}_{\overline{\mathbb{Q}}(z)}\left(f_{1}(z), \ldots, f_{m}(z)\right)
$$

- First proof by Shidlovskii (1956) using Siegel's method.
- Second proof by André (2000) using the theory of E-operators.
- First proof by Ku. Nishioka (1990) using Nesterenko's approach.
- Second proof by A. \& Faverjon (2020) using the pioneering ideas of Mahler.
- Proofs also work in p-adic settings and over $\mathbb{F}_{q}(t)$ (Fernandes, 2018).

Remark

The Galois theories associated with linear differential/difference equations provide tools to compute the value of $\operatorname{degtr} \operatorname{tr}_{\overline{\mathbb{Q}}(z)}\left(f_{1}(z), \ldots, f_{m}(z)\right)$.

Consequences

Theorem

Let $f_{1}(z), \ldots, f_{m}(z) \in \overline{\mathbb{Q}}[[z]]$ be \star-functions that form the entries of a solution vector of a linear $*$-system. Let $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$ be a regular point. Then

$$
\operatorname{degtr}_{\overline{\mathbb{Q}}}\left(f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)=\operatorname{degtr}_{\overline{\mathbb{Q}}(z)}\left(f_{1}(z), \ldots, f_{m}(z)\right) .
$$

Equations of order 1.

- If $f(z)$ is a transcendental \star-function of order 1 , then $f(\alpha)$ is transcendental if α is regular and $f(\alpha)=0$ otherwise.

Maximal transcendence degree.

- If $\operatorname{degtr}_{\bar{\Phi}_{(z)}}\left(f_{1}(z), \ldots, f_{m}(z)\right)=m$, then $f_{1}(\alpha), \ldots, f_{m}(\alpha)$ are algebraically independent if α is regular and linearly dependent otherwise.

Generic behaviour.

- Let $f_{1}(z), \ldots, f_{r}(z)$ be algebraically independent $*$-functions. Then they take algebraically independent values at almost all algebraic points.

Qualitative result

Lifting Theorem

Let $f_{1}(z), \ldots, f_{m}(z) \in \overline{\mathbb{Q}}[[z]]$ be \star-functions that form the entries of a solution vector of a linear \star-system. Let $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$ be a regular point. Then for every homogeneous $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{m}\right]$ such that $P\left(f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)=0$, there exists $Q \in \overline{\mathbb{Q}}\left[z, X_{1}, \ldots, X_{m}\right]$, homogeneous in X_{1}, \ldots, X_{m}, such that

$$
\begin{aligned}
Q\left(z, f_{1}(z), \ldots, f_{m}(z)\right) & =0 \\
Q\left(\alpha, X_{1}, \ldots, X_{m}\right) & =P\left(X_{1}, \ldots, X_{m}\right) .
\end{aligned}
$$

- First proof by Beukers (2006) using the theory of E-operators.
- Second proof by André (2014) derived from the quantitative statement.
- First proof by Philippon (2015) (and A. \& Faverjon, 2017) derived from the quantitative statement.
- Second proof by Nagy and Szamuely (2020) "à la André".
- Third proof by A. \& Faverjon (2020) using the pioneering ideas of Mahler.

Consequence

Theorem

Given a *-function $f(z)$ and an algebraic point α, there exists an algorithm that determines whether $f(\alpha)$ is algebraic or transcendental.

- A. \& Rivoal (2018)
- A. \& Faverjon (2018)

Qualitative result II: algebro-differential and σ-algebraic relations

A $\frac{d}{d z}$-algebraic relation between
$f_{1}(z), \ldots, f_{r}(z)$ is an algebraic relation over $\overline{\mathbb{Q}}(z)$ between these functions and their successive derivatives.

A σ_{q}-algebraic relation between $f_{1}(z), \ldots, f_{r}(z)$ is an algebraic relation over $\overline{\mathbb{Q}}(z)$ between these functions and their successive images by $\sigma_{q}: z \rightarrow z^{q}$.

General Lifting Theorem

Let $f_{1}(z), \ldots, f_{r}(z)$ be \star-functions. Let $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$ be such that these functions are well-defined. Then any homogeneous algebraic relation over $\overline{\mathbb{Q}}$ between $f_{1}(\alpha), \ldots, f_{r}(\alpha)$ is the specialization of a homogeneous \star-algebraic relation over $\overline{\mathbb{Q}}(z)$ between $f_{1}(z), \ldots, f_{r}(z)$.

- For each $f_{i}(z)$, consider an

E-system associated with an E-operator.
Take the direct sum of these systems and apply the lifting theorem.

- For each $f_{i}(z)$, one can construct an M-system regular at α and involving only $f_{i}(z), f_{i}\left(z^{q}\right), \ldots$ Take the direct sum of these systems and apply the lifting theorem.

Consequence

Descent Theorem

Let $f_{1}(z), \ldots, f_{r}(z)$ be \star-functions with coefficients in a number field K. Let $\alpha \in K \backslash\{0\}$ be a point where these functions are well-defined. Then

$$
\operatorname{Lin}_{\overline{\mathbb{Q}}}\left(f_{1}(\alpha), \ldots, f_{r}(\alpha)\right)=\operatorname{Span}_{\overline{\mathbb{Q}}}\left(\operatorname{Lin}_{k}\left(f_{1}(\alpha), \ldots, f_{r}(\alpha)\right)\right) .
$$

Corollary

Let $f(z)$ be a \star-function with coefficients in a number field K. Let $\alpha \in K \backslash\{0\}$ be a point where this functions is well-defined. Then either $f(\alpha)$ is transcendental of $f(\alpha) \in K$.

In the case of M-functions and $K=\mathbb{Q}$, this result has an important consequence concerning the complexity of the integer base expansions of algebraic numbers (Problem P1).

Divergence: algebraic relations at different points

To study the algebraic relation between $f_{1}\left(\alpha_{1}\right), \ldots, f_{r}\left(\alpha_{r}\right)$, it is sufficient to consider the algebraic relations between the values of the E-functions $f_{1}\left(\alpha_{1} z\right), \ldots, f_{r}\left(\alpha_{r} z\right)$ at $z=1$.

This more general problem rests on the previous theory!

Let \mathcal{E}_{α} be the smallest field generated by all the values of E-functions evaluated at α.

If α and β are two non-zero algebraic numbers, then

$$
\mathcal{E}_{\alpha}=\mathcal{E}_{\beta}=: \mathcal{E} .
$$

To study the algebraic relations between $f_{1}\left(\alpha_{1}\right), \ldots, f_{r}\left(\alpha_{r}\right)$, one has to develop Mahler's method in several variables.

Indeed, if $f(z)$ is an M-function and $\alpha \in \overline{\mathbb{Q}}$, then $f(\alpha z)$ is usually not an M-function!

Let \mathcal{M}_{α} be the smallest field generated by all the values of M-functions evaluated at α.

Theorem

If α and β are multiplicatively independent algebraic numbers, then \mathcal{M}_{α} and \mathcal{M}_{β} are free over $\overline{\mathbb{Q}}$.

Conjecture

For all $\alpha \in \overline{\mathbb{Q}}, 0<|\alpha|<1$, the fields \mathcal{E} and \mathcal{M}_{α} are free over $\overline{\mathbb{Q}}$.

