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E - and M-functions

Definition (Siegel 1929)

f (z) ∈ Q[[z]] is an E -function if there
exist p0(z), . . . , pm(z) ∈ Q[z], not all
zero, such that

p0f (z) + p1f
′(z) + · · ·+ pmf

(m)(z) = 0

and the coefficients of f (z) satisfy
some arithmetic conditions.

Examples. Important functions
occurring in mathematics and physics:
exp(z), sin(z), cos(z),

J0(z) =
∞∑
n=0

(−1)n

n!222n z
2n ,

and (some) hypergeometric functions.

Definition (inspired by Mahler 1929)

f (z) ∈ Q[[z]] is an Mq-function if there
exist p0(z), . . . , pm(z) ∈ Q[z], not all
zero, such that

p0f (z) + p1f (z
q) + · · ·+ pmf (z

qm ) = 0 .

The parameter q ≥ 2 is an integer.

Examples. Functions related to
combinatorics and computer science:

∞∑
n=0

zq
n

,

∞∏
n=0

1
1− zqn

,

∞∑
n=0

sq(n)z
n ,

and the generating series of the
sequences produced by finite automata.



Analytic beviour

An E -function:

• is an entire function.

An M-function:

• is analytic in some neighborhood
of zero and meromorphic inside
the open unit disc.

• is either rational or has the unit
circle as a natural boundary
(Randé, 1992).

• cannot satisfy an algebraic
differential equation, unless it is
rational (A., Dreyfus, and
Hardouin 2021).

Remark
A ?-function is either rational or transcendental.



Motivation

The theory of E -functions is based on
examples.

• The amazing results from the 19th
century concerning the exponential
function, leading to the
transcendence of e, π, log 2, and
to the impossibility of squaring the
circle.

• The results of Siegel concerning
the Bessel functions.

The study of M-functions is mainly
motivated by old problems concerning
the complexity of integer base
expansions of real numbers
(É. Borel, Turing, Morse-Hedlund,
Hartmanis-Stearns, Furstenberg...).

P1 What can be said about the
complexity of the decimal
expansion of

√
2, π, e or log 2?

P2 Is it possible for a real irrational
number to have a simple
expansion both in base 2 and 3?

Achieving such goals requires the most
general results of this theory!



Main motto

The algebraic relations over Q between the values of ?-functions at algebraic
points have a functional origin: they are governed by the algebraic relations
over Q(z) between these functions.



Linear systems and singularities

One studies linear systems of the form:

Y ′(z) = A(z)Y (z)

with A(z) ∈Mn(Q(z)).

One studies linear systems of the form:

Y (zq) = A(z)Y (z)

with A(z) ∈ GLn(Q(z)).

A point α is regular if the matrix A(z)
is well-defined at α.

A point α is regular if, for all k � 1,
the matrix

Ak(z) := A(zq
k−1

)A(zq
k−2

) · · ·A(z)

is well-defined and invertible at α.

Remark
An E -system has only finitely many singularities, while an M-system can have
infinitely many singularities. However, it has only finitely many singularities on
each compact subset of the open unit disc.



Quantitative result: Equality of transcendence degrees

Theorem
Let f1(z), . . . , fm(z) ∈ Q[[z]] be ?-functions that form the entries of a solution
vector of a linear ?-system. Let α ∈ Q \ {0} be a regular point. Then

degtrQ(f1(α), . . . , fm(α)) = degtrQ(z)(f1(z), . . . , fm(z)) .

• First proof by Shidlovskii (1956)
using Siegel’s method.

• Second proof by André (2000)
using the theory of E -operators.

• First proof by Ku. Nishioka (1990)
using Nesterenko’s approach.

• Second proof by A. & Faverjon
(2020) using the pioneering ideas
of Mahler.

• Proofs also work in p-adic settings
and over Fq(t) (Fernandes, 2018).

Remark
The Galois theories associated with linear differential/difference equations
provide tools to compute the value of degtrQ(z)(f1(z), . . . , fm(z)).



Consequences

Theorem
Let f1(z), . . . , fm(z) ∈ Q[[z]] be ?-functions that form the entries of a solution
vector of a linear ?-system. Let α ∈ Q \ {0} be a regular point. Then

degtrQ(f1(α), . . . , fm(α)) = degtrQ(z)(f1(z), . . . , fm(z)) .

Equations of order 1.
• If f (z) is a transcendental ?-function of order 1, then f (α) is

transcendental if α is regular and f (α) = 0 otherwise.

Maximal transcendence degree.
• If degtrQ(z)(f1(z), . . . , fm(z)) = m, then f1(α), . . . , fm(α) are algebraically

independent if α is regular and linearly dependent otherwise.

Generic behaviour.
• Let f1(z), . . . , fr (z) be algebraically independent ?-functions. Then they

take algebraically independent values at almost all algebraic points.



Qualitative result

Lifting Theorem

Let f1(z), . . . , fm(z) ∈ Q[[z]] be ?-functions that form the entries of a solution
vector of a linear ?-system. Let α ∈ Q \ {0} be a regular point. Then for every
homogeneous P ∈ Q[X1, . . . ,Xm] such that P(f1(α), . . . , fm(α)) = 0, there
exists Q ∈ Q[z ,X1, . . . ,Xm], homogeneous in X1, . . . ,Xm, such that

Q(z , f1(z), . . . , fm(z)) = 0

Q(α,X1, . . . ,Xm) = P(X1, . . . ,Xm) .

• First proof by Beukers (2006)
using the theory of E -operators.

• Second proof by André (2014)
derived from the quantitative
statement.

• First proof by Philippon (2015)
(and A. & Faverjon, 2017) derived
from the quantitative statement.

• Second proof by Nagy and
Szamuely (2020) “à la André".

• Third proof by A. & Faverjon
(2020) using the pioneering ideas
of Mahler.



Consequence

Theorem
Given a ?-function f (z) and an algebraic point α, there exists an algorithm
that determines whether f (α) is algebraic or transcendental.

• A. & Rivoal (2018) • A. & Faverjon (2018)



Qualitative result II: algebro-differential and σ-algebraic relations

A d
dz
-algebraic relation between

f1(z), . . . , fr (z) is an algebraic relation
over Q(z) between these functions and
their successive derivatives.

A σq-algebraic relation between
f1(z), . . . , fr (z) is an algebraic relation
over Q(z) between these functions and
their successive images by σq : z → zq.

General Lifting Theorem

Let f1(z), . . . , fr (z) be ?-functions. Let α ∈ Q \ {0} be such that these
functions are well-defined. Then any homogeneous algebraic relation over Q
between f1(α), . . . , fr (α) is the specialization of a homogeneous ?-algebraic
relation over Q(z) between f1(z), . . . , fr (z).

• For each fi (z), consider an
E -system associated with an
E -operator.
Take the direct sum of these
systems and apply the lifting
theorem.

• For each fi (z), one can construct
an M-system regular at α and
involving only fi (z), fi (z

q), . . .
Take the direct sum of these
systems and apply the lifting
theorem.



Consequence

Descent Theorem
Let f1(z), . . . , fr (z) be ?-functions with coefficients in a number field K . Let
α ∈ K \ {0} be a point where these functions are well-defined. Then

LinQ(f1(α), . . . , fr (α)) = SpanQ(LinK (f1(α), . . . , fr (α))) .

Corollary

Let f (z) be a ?-function with coefficients in a number field K . Let α ∈ K \ {0}
be a point where this functions is well-defined. Then either f (α) is
transcendental of f (α) ∈ K .

In the case of M-functions and K = Q, this result has an important
consequence concerning the complexity of the integer base expansions of
algebraic numbers (Problem P1).



Divergence: algebraic relations at different points

To study the algebraic relation between
f1(α1), . . . , fr (αr ), it is sufficient to
consider the algebraic relations between
the values of the E -functions
f1(α1z), . . . , fr (αrz) at z = 1.

This more general problem rests on the
previous theory!

To study the algebraic relations
between f1(α1), . . . , fr (αr ), one has to
develop Mahler’s method in several
variables.

Indeed, if f (z) is an M-function and
α ∈ Q, then f (αz) is usually not an
M-function!

Let Eα be the smallest field generated
by all the values of E -functions
evaluated at α.

If α and β are two non-zero algebraic
numbers, then

Eα = Eβ =: E .

LetMα be the smallest field generated
by all the values of M-functions
evaluated at α.

Theorem
If α and β are multiplicatively
independent algebraic numbers, then
Mα andMβ are free over Q.

Conjecture

For all α ∈ Q, 0 < |α| < 1, the fields E andMα are free over Q.


