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Algebraic Mellin transforms



Algebraic Mellin transforms

(Not in this talk) The classical Mellin transform (Mellin, 1897)

φ : (0,∞)→ C ⇝ (Mφ)(s) =
∫ ∞

0
xsφ(x)dxx ·

Algebraic Mellin transforms (Aomoto, 1974)

I(s) =
∫
σ

f sω.

▶ X an (affine, smooth) algebraic variety over a field k ⊂ C.
▶ f : X→ Gm an invertible function on X.
▶ ω an algebraic differential form on X, σ a topological cycle on X.

(Bloch–Vlasenko call them “motivic Mellin transforms” or “motivic Γ-functions”.)

More generally, for f = (f1, . . . , fN) : X→ GN
m, consider multivariate versions:

I(s1, . . . , sN) =
∫
σ

f s11 · · · f
sN
N ω.
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Examples of algebraic Mellin transforms

Example: the beta function

B(s, t) =
∫ 1

0
x s(1− x)t dx

x(1− x) =
Γ(s)Γ(t)
Γ(s+ t)

Corresponds to (x, 1− x) : P1 \ {∞, 0, 1} −→ G2
m.

Example: the classical hypergeometric function

B(b, c− b) 2F1(a,b; c; z) =
∫ 1

0
xb(1− x)c−b(1− zx)−a dx

x(1− x)
Corresponds to (x, 1− x, 1− zx) : P1 \ {∞, 0, 1, z−1} −→ G3

m.

Example: Feynman integrals
Γ a connected graph with n edges and first Betti number h.

IΓ(ε) =
∫
σΓ

(
Ψh+1

Γ

Ξh
Γ

)ε

ωΓ

Corresponds to Pn−1 \ {ΨΓΞΓ = 0} −→ Gm.
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Arithmetic structure of algebraic Mellin transforms

(Not in this talk) Systems of finite difference equations

Ii(s+ 1) =
n∑
i=1

fi,j(s) Ij(s) with fi,j(s) ∈ k(s).

▶ Example: B(s+ 1, t) = s
s+ t B(s, t) , B(s, t+ 1) = t

s+ t B(s, t).

▶ Corresponds to a rank 1 “finite difference module” (Loeser–Sabbah).

(Not in this talk) Values at s ∈ Q
For s ∈ Q, I(s) is a period of a cyclic cover of X.

(In this talk) Laurent expansion at s = 0

I(s) =
∑

n≫−∞

αnsn where the αn are periods.

We are interested in the Galois theory of the αn.
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Galois theory for periods (André)

The slogan
Galois theory of algebraic numbers should extend to a Galois theory for
periods, where the Galois groups are algebraic groups over Q.

▶ Periods arise as coefficients of the perfect pairing∫
: HB

n (X)× HndR(X) −→ C , (σ, ω) 7→
∫
σ

ω

for algebraic varieties X, or pairs (X, Y), defined over Q.
▶ A tannakian formalism of motives gives rise to a motivic Galois group
that acts linearly on all Hn

dR(X) and Hn
dR(X, Y).

▶ This gives rise to a Galois theory for periods:

“ g .
∫
σ

ω :=

∫
σ

g.ω ”

▶ Grothendieck’s period conjecture says that this formula is well-defined.
▶ Unconditional: Galois theory for motivic periods.
▶ Computable: Galois coaction.
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The key example: the beta function

▶ Not great: B(s, t) = s+ t
st

(
1−

∑
m,n⩾1

(−s)m(−t)nζ(1, . . . , 1︸ ︷︷ ︸
n−1

,m+ 1)
)
.

▶ Better:

B(s, t) = s+ t
st exp

(
∞∑
n=2

(−1)n
n ζ(n) (sn + tn − (s+ t)n)

)
.

▶ Galois theory for zeta values: for g in the motivic Galois group,

g . ζ(n) = ζ(n) + a(n)g with a(n)g ∈ Q.

▶ We get a Galois theory for the beta function:

g .B(s, t) = Ag(s, t) B(s, t) with Ag(s, t) ∈ Q((s, t))×.

▶ B(s, t) corresponds to a rank 1 representation of the motivic Galois
group defined over Q((s, t)).
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The main theorem

Theorem (Brown–D.–Fresán–Tapušković)
The motivic Galois group acts on Taylor expansions of algebraic Mellin
transforms via power series, i.e., for g in the motivic Galois group G:

g.
∫
σ

f sω =
N∑
i=1

A(i)g (s)
∫
σ

f sωi

where the A(i)g (s) are in k((s)).

▶ This is a finite formula which computes the Galois theory of infinitely
many periods.
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Proof of concept

▶ A rank 2 example:

I(a; s) = 1
s (2F1(s, 1, s+ 1; a)− 1) =

∫ 1

0
xs adx
1− ax =

∞∑
n=0

(−s)n Lin+1(a).

Galois theory:

g.I(a; s) = Ag(a; s) I(a; s) + Bg(a; s) with Ag(a; s),Bg(a; s) ∈ Q((s)).

▶ A family of examples (Brown-D. 2022): Lauricella hypergeometric
functions ∫ σi

0
xs0(1− xσ−1

1 )s1 · · · (1− xσ−1
n )sn

dx
x− σj

·
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Twisted cohomology



Twisted cohomology, 1

Twisted cohomology
X an (affine, smooth) algebraic variety over C, f : X→ C∗.

H•(X, f) := H•(X, f ∗(ts)).

▶ Fix s ∈ C.
▶ de Rham: Hi

dR(X, f) := Hi(X, (Ω•
X ,∇s)) where

∇s : ω 7→ dω + sdff ∧ ω (so that d(f sω) = f s∇s(ω)).

▶ Betti: HB
i (X, f) := Hsing

i (X,Ls) where
Ls = C f s (monodromy e2πis).

▶ Algebraic Mellin transforms arise as coefficients of the perfect pairing∫
: HB

i (X, f)× Hi
dR(X, f) −→ C , (σ, ω) 7→

∫
σ

f sω.

▶ Easy to compute for generic values of s ∈ C. Typical behavior:Hi(X, f) = 0 for i 6= n := dim(X);
dimHn(X, f) = (−1)nχ(X).
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Twisted cohomology, 2

Does twisted cohomology come from geometry?

▶ H•(X, f) is not motivic (does not come from geometry) if s /∈ Q.
▶ A formal generic version of H•(X, f) is motivic (comes from geometry).

▶ de Rham: a finite dimensional vector space over k((s)),

Mi
dR(X, f) := Hi(X, (Ω•

X ((s)),∇)),

where ∇ : ω 7→ dω + s dff ∧ ω.
▶ Betti: a finite dimensional vector space over Q((log µ)),

MB
i (X, f) := Hsing

i (X,L),

where L is the rank 1 local system of vector spaces over Q((log µ))

π1(X(C))
f∗−→ π1(C∗) = Z µ−→ Q((log µ))×

▶ Perfect pairing valued in C((s)), with µ↔ e2πis, giving rise to Laurent
expansions of algebraic Mellin transforms.
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Why is twisted cohomology motivic?

Mi
dR(X, f) := Hi(X, (Ω•

X ((s)),∇))

'
(
lim←−
n

Hi(X, (Ω•
X [s]/(sn+1),∇))︸ ︷︷ ︸
=: Mn,dR

)
⊗k[[s]] k((s)).

▶ Analogy with étale ℓ-adic cohomology:

H•
ét(X;Qℓ) :=

(
lim←−
n

H•
ét(X;Z/ℓn+1Z)

)
⊗Zℓ Qℓ.

Each Mn,dR is motivic

▶ Comes from the motivic fundamental group of Gm (Hain, Deligne).
▶ The k[s]/(sn+1)-module structure is motivic, where s↔ H1(Gm).
▶ Tannakian category of “local Mellin motives”

M(X, f) = (· · · → Mn → Mn−1 → · · · → M1 → M0).
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Application to Feynman integrals



Feynman integrals

▶ Γ a connected graph with n edges and first Betti number h.
▶ Graph polynomials ΨΓ, ΞΓ, homogeneous in n variables.
▶ Feynman integral

IΓ =

∫
Pn−1(R+)

Ψ
n−(h+1)D/2
Γ

Ξ
n−hD/2
Γ

Ω.

▶ ΞΓ/ΨΓ is a “tropical height” (Amini–Bloch–Burgos–Fresán, Tourkine).

Example: the massless triangle graph (D = 4)

3

1

2

q1

q2 q3

IΓ =

∫∫
(0,∞)2

dx dy
(x+ y+ 1)(q21x+ q22y+ q23xy)
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Dimensional regularization

Problem: Feynman integrals do not always converge!

A wild idea
Work in space-time dimension

D = 4− 2ε

and consider the Laurent expansion near ε = 0.

Example: the massless triangle graph

IΓ(ε) =
∫∫

(0,∞)2

(
(x+ y+ 1)2

q21x+ q22y+ q23xy

)ε dxdy
(x+ y+ 1)(q21x+ q22y+ q23xy)

▶ This is an algebraic Mellin transform for

f = Ψh+1
Γ

Ξh
Γ

: X = Pn−1 \ {ΨΓΞΓ = 0} −→ Gm.

▶ Corresponding geometry: (X,
⋃
i{xi = 0}, f).
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Galois theory of Feynman integrals / “Cosmic Galois theory”

Theorem (Brown–D.–Fresán–Tapušković)
The space of Laurent expansions of Feynman integrals in dimensional
regularization is closed under the action of the motivic Galois group:

g.IΓ(ε) =
N∑
i=1

A(i)g (ε) IΓi(ε) with A(i)g (ε) ∈ Q((ε)).

▶ Conjectured and checked by Abreu–Britto–Duhr–Gardi–Matthew.
▶ Still difficult to make explicit.
▶ Should lead to arithmetic constraints on Feynman integrals.
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