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Algebraic Mellin transforms



Algebraic Mellin transforms

(Not in this talk) The classical Mellin transform (Mellin, 1897)

P00 2C = (MO = [ X0

Algebraic Mellin transforms (Aomoto, 1974)

I(s) = /a fow.

» X an (affine, smooth) algebraic variety over a field k C C.
» f: X — Gn an invertible function on X.

» w an algebraic differential form on X, o a topological cycle on X.

(Bloch-Vlasenko call them “motivic Mellin transforms” or “motivic I'-functions”.)

More generally, for f = (fi,...,fn) : X = Gp, consider multivariate versions:

I(S1,...,SN):/]‘-1$1--~ ASINw.



Examples of algebraic Mellin transforms

Example: the beta function

P dx TR
B(S’t)_/o X=X a =% =~ T+ 9

Corresponds to (x,1—x) : P"\ {00,0,1} — G2,

Example: the classical hypergeometric function

dx

B(b,c — b)2Fi(a, b; c;z) = /01 X(1=x)P1 = zx)"’m

Corresponds to (x,1—x,1—2x) : P'\ {00,0,1,z7"} — G3,.

Example: Feynman integrals
I a connected graph with n edges and first Betti number h.

\Uh+1 €
Ir(E) = / _Fh wr
or =r

Corresponds to P\ {Wr=r = 0} — Gp.




Arithmetic structure of algebraic Mellin transforms

(Not in this talk) Systems of finite difference equations

W+ =3 fiuls) () withfis(s) € k(s).
» Example: B(s+1,t) = SLH B(s,t), B(s,t+1) = SLH B(s, 1).

» Corresponds to a rank 1 “finite difference module” (Loeser-Sabbah).

(Not in this talk) Values ats € Q
Fors € Q, I(s) is a period of a cyclic cover of X.
(In this talk) Laurent expansion at s = 0

I(s) = Z ans”  where the ay are periods.
n>—oo

We are interested in the Galois theory of the an.



Galois theory for periods (André)

The slogan

Galois theory of algebraic numbers should extend to a Galois theory for
periods, where the Galois groups are algebraic groups over Q.

>

v

Periods arise as coefficients of the perfect pairing
/ : HE(X) X Hir(X) — C , (o,w) *—)/w

for algebraic varieties X, or pairs (X, Y), defined over Q.

A tannakian formalism of motives gives rise to a motivic Galois group
that acts linearly on all Hiz(X) and Hgr(X, Y).

This gives rise to a Galois theory for periods:

“ g./w::/g.w "

Grothendieck’s period conjecture says that this formula is well-defined.
Unconditional: Galois theory for motivic periods.
Computable: Galois coaction.




The key example: the beta function

» Not great: B(s,t) = Sl (1 = > (=9)"(-1)%¢A,...,1,m+ 1)).

st
m,n>1
n—1
» Better:
— 57“ = ﬂ n n n
w00 = 23t oo (S L@ + 0 - e ren).

» Galois theory for zeta values: for g in the motivic Galois group,
g.c(n)=¢(n+ad” with ol € Q.
» We get a Galois theory for the beta function:

g.B(s,t) = Ag(s,t) B(s, 1) with  Ag(s,t) € Q((s,t)*.

v

B(s, t) corresponds to a rank 1 representation of the motivic Galois
group defined over Q((s, t)).



The main theorem

Theorem (Brown-D.-Fresan-Tapuskovic)
The motivic Galois group acts on Taylor expansions of algebraic Mellin
transforms via power series, i.e., for g in the motivic Galois group G:

. [ = i 46) | fro

where the Ag)(s) are in R((s)).

This is a finite formula which computes the Galois theory of infinitely
many periods.



Proof of concept

» Arank 2 example:

oo

1
(2F1(S,1,S+1;a)—1):/ GdX Z S) Lln+1
0

n=0

I(a;s) = g

Galois theory:

g.l(a;s) = Ag(a;s)I(a;s) + Bg(a;s) with  Ag(a;s),Bg(a;s) € Q((s)).

» A family of examples (Brown-D. 2022): Lauricella hypergeometric
functions

“f dx
X1 —xo7 ) - (1= xop )" ——
0 — 0j



Twisted cohomology



Twisted cohomology, 1

Twisted cohomology
X an (affine, smooth) algebraic variety over C, f: X — C*.

H*(X,f) == H* (X, f" ().

Fixs € C.
de Rham: Hig (X, f) := H (X, (2%, Vs)) where
Vs :wi— dw+ S%c Aw (sothat d(f°w) = f°Vs(w)).
Betti: HE (X, f) := HI"(X, Ls) where
Ls=Cf* (monodromy ™).
Algebraic Mellin transforms arise as coefficients of the perfect pairing
/ HEOGS) x Hir(GH) — €, (oyw) o> /fsw.

Easy to compute for generic values of s € C. Typical behavior:

H(X,f) =0 for i# n:=dim(X);
dimH"(X, ) = (=1)"x(X).

vy

v
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Twisted cohomology, 2

Does twisted cohomology come from geometry?

» H°(X,f) is not motivic (does not come from geometry) if s ¢ Q.

» A formal generic version of H*(X, f) is motivic (comes from geometry).

» de Rham: a finite dimensional vector space over R((s)),
Mar(X,f) = H'(X, (2%(5), V),
where V : w — dw+s¥/\w.
» Betti: a finite dimensional vector space over Q((log 1)),
MP(X,f) = H"8(X, £),

where £ is the rank 1 local system of vector spaces over Q((log 1))

m(X(C)) L5 m(C*) = Z -5 Q((log ) *

270S

» Perfect pairing valued in C((s)), with u +» €*™*, giving rise to Laurent

expansions of algebraic Mellin transforms.



Why is twisted cohomology motivic?

Mar(X,f) := H'(X, (2%(5). V)
~ ((ljm HX @51s1/(™), V) ) @ R(S)-

n

=: My 4r

» Analogy with étale ¢-adic cohomology:

HE (6 Qe) = (lim HA(GZ/672)) @z, Qo

Each M 4r is motivic

» Comes from the motivic fundamental group of G, (Hain, Deligne).
» The R[s]/(s"t")-module structure is motivic, where s < Hi(Gnm).
» Tannakian category of “local Mellin motives”

MX, ) =(-— My = Mp_1 —--- = My — My).



Application to Feynman integrals



Feynman integrals

» [ a connected graph with n edges and first Betti number h.
» Graph polynomials Wr, =r, homogeneous in n variables.

» Feynman integral
W= (h+1)p/2
Ir = / = &
P -1(Ry)  =p
» =r/Vris a “tropical height” (Amini-Bloch-Burgos-Fresan, Tourkine).

Example: the massless triangle graph (D = &)

(o

q2 qs

| // dxdy
r=
(0,00)2 (X y 1)(q%X qu q§Xy)
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Dimensional regularization

Problem: Feynman integrals do not always converge!

A wild idea
Work in space-time dimension

D=4-—2¢
and consider the Laurent expansion near e = 0.

Example: the massless triangle graph

() = // < X+y+1) >5 dxdy
' 000 \AX+ @Y+ a3xy) (x+y+1)(@3x + g3y + G3xy)

» This is an algebraic Mellin transform for
wh+1
f_
=2

» Corresponding geometry: (X, J;{xi = 0},f).

X=P" "\ {Wr=r = 0} — Gn.
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Galois theory of Feynman integrals / “Cosmic Galois theory”

Theorem (Brown-D.—-Fresan-Tapuskovic)
The space of Laurent expansions of Feynman integrals in dimensional
regularization is closed under the action of the motivic Galois group:

glr(e) = >_AD() Ir,(e) with  AD(e) € Q(e)-

» Conjectured and checked by Abreu-Britto-Duhr-Gardi-Matthew.
» Still difficult to make explicit.

» Should lead to arithmetic constraints on Feynman integrals.
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