A Lindemann–Weierstrass theorem for *E*-functions

Atelier E-fonctions, G-fonctions et périodes

Éric Delaygue

Camille Jordan Institute, Lyon, France

IHP, January 8, 2023

- 1 Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- Applications
- 5 Sketch of the proof

Classical results and questions

- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- Applications
- 5 Sketch of the proof

Diophantine properties of the exponential function

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Completely effectively solved by Adamczewski–Rivoal (2018) with refinements by Bostan–Rivoal–Salvy (2022). Based on

- André's theory of *E*-operators (2000)
- Beukers' refinement of Siegel-Shidlovskii theorem (2006)

Diophantine properties of the exponential function

Lindemann–Weierstrass (1882–1885)

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are distinct, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Question 2

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

Lindemann–Weierstrass

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} .

Question 3

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ be \mathbb{Q} -linearly independent. Are $f(\alpha_1), \ldots, f(\alpha_n)$ algebraically independent over \mathbb{Q} ?

Foundational results

André (2000) : *E*-operators

Every E-function is annihilated by a differential operator which has only 0 and ∞ as possible singularities.

Beukers (2006) : Refinement of the Siegel-Shidlovskii theorem

Let $Y = (f_1, \ldots, f_n)^{\top}$ be a vector of *E*-functions satisfying Y' = AY where *A* is an $n \times n$ -matrix with entries in $\overline{\mathbb{Q}}(z)$. Denote the common denominator of the entries of *A* by T(z).

Let $\alpha \in \overline{\mathbb{Q}}$ satisfying $\alpha T(\alpha) \neq 0$.

Then, for any homogeneous polynomial $P \in \overline{\mathbb{Q}}[X_1, \ldots, X_n]$ such that $P(f_1(\alpha), \ldots, f_n(\alpha)) = 0$, there exists a polynomial $Q \in \overline{\mathbb{Q}}[Z, X_1, \ldots, X_n]$, homogeneous in the variables X_1, \ldots, X_n , such that $Q(\alpha, X_1, \ldots, X_n) = P(X_1, \ldots, X_n)$ and $Q(z, f_1(z), \ldots, f_n(z)) = 0$.

Classical results and questions

2 Hermite-Lindemann and E-functions

3 Lindemann–Weierstrass and E-functions

Applications

5 Sketch of the proof

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

We say that f is purely transcendental if Exc(f) is empty.

- Hermite-Lindemann : exp is purely transcendental.
- Siegel (1929) : Bessel function J_0 is purely transcendental :

$$J_0(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{z}{2}\right)^{2n}$$

• Bostan–Rivoal–Salvy (2022) : |Exc(f)| = d

$$f(x) = \sum_{n=0}^{\infty} {n+d \choose d} rac{1}{(a+d+1)_n} z^n, \quad (a \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}).$$

8 / 23

Canonical decomposition

- An algebraic *E*-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental *E*-functions !

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental *E*-function *f* can be written in a unique way as f = p + qg with $p, q \in \overline{\mathbb{Q}}[z]$, *q* monic, $q(0) \neq 0$, $\deg(p) < \deg(q)$ and *g* is a purely transcendental *E*-function.

HL algorithm by Adamczewski-Rivoal (2018)

It takes an *E*-function f as input. It first says whether f is transcendental or not. Then it returns Exc(f) if f is transcendental.

Remark : improved by Bostan–Rivoal–Salvy (2022). This yields an algorithm to compute canonical decompositions.

Éric Delaygue

A Lindemann-Weierstrass theorem for *E*-functions

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- Applications
- 5 Sketch of the proof

Question 2

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

- First obstruction : $\alpha_1, \ldots, \alpha_n$ must be non-exceptional values for f.
- Second obstruction : difference equations such as $J_0(-x) = J_0(x)$.

Siegel (1929) If $\alpha_1^2, \ldots, \alpha_n^2$ are pairwise distinct non-zero algebraic numbers, then $J_0(\alpha_1), \ldots, J_0(\alpha_n)$ are algebraically independent over \mathbb{Q} .

On Beukers' lifting result

Let $Y = (f_1, \ldots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent *E*-functions.

Y' = AY.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

When $\alpha T(\alpha) \neq 0$ Then $f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

When $T(\alpha) = 0$

There exists a non-trivial $\overline{\mathbb{Q}}$ -linear relation between $f_1(\alpha), \ldots, f_n(\alpha)$.

Indeed, write B(z) = T(z)A(z). Then T(z)Y'(z) = B(z)Y(z) yields $0 = B(\alpha)Y(\alpha)$.

<u>Even more</u> : Every such relation can be explicitely given by the system through a desingularization process by Beukers.

Éric Delaygue

Lindemann–Weierstrass and Beukers' lifting result

Lindemann–Weierstrass

Let $\alpha_1, \ldots, \alpha_n$ be distinct algebraic numbers and consider $f_i(z) = e^{\alpha_i z}$.

$$\left(\begin{array}{c} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{array}\right)' = \left(\begin{array}{c} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{array}\right) \left(\begin{array}{c} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{array}\right).$$

We have T(z) = 1 so $T(1) \neq 0$ and $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Problem</u> : Given an *E*-function f and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$:

- Are f(α₁z),..., f(α_nz) Q̄(z)-linearly independent?
- Is *T*(1) non-zero?

How to choose *n* and $\alpha_1, \ldots, \alpha_n$ to answer yes twice?

Éric Delaygue

13 / 23

Singularities of the underlying G-function

To every *E*-function corresponds a *G*-series $\psi(f)$ defined by

$$\psi\left(\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n\right)=\sum_{n=0}^{\infty}a_nz^n.$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,
- has finitely many singularities at finite distance, the set of which we denote by G(f).

Examples

•
$$\psi(\exp) = 1/(1-z)$$
 and $\mathfrak{S}(\exp) = \{1\}.$

• $\psi(J_0) = 1/\sqrt{1+z^2}$ and $\mathfrak{S}(J_0) = \{-i, i\}.$

A Lindemann–Weierstrass theorem for *E*-functions

D. (2022)

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ non-zero such that

- for all $i, \alpha_i \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_1, \rho_2 \in \mathfrak{S}(f)$, $\alpha_i/\alpha_j \neq \rho_1/\rho_2$.

Then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Exponential function

exp is purely transcendental and $\mathfrak{S}(exp) = \{1\}$. The second condition reads $\alpha_i \neq \alpha_j$: we retrieve the Lindemann–Weierstrass theorem.

Bessel function

 J_0 is purely transcendental and $\mathfrak{S}(J_0) = \{-i, i\}$. The second condition reads $\alpha_i^2 \neq \alpha_i^2$. We retrieve the linear part of Siegel's result.

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- 5 Sketch of the proof

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1)\cdots(a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s > r and rational parameters. Let $\alpha_1, \ldots, \alpha_n$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F(\alpha_1), \ldots, F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Hints</u>: Write k = s - r and consider the *E*-function $f(z) = F(z^k)$.

- $\psi(f) = H(kz^k)$ where H is a hypergeometric G-function.
- Elements of $\mathfrak{S}(f)$ are of the form ρ/k where ρ is a k-th root of unity.

• if
$$\alpha_i = \beta_i^k$$
, then $\alpha_i \neq \alpha_j$ implies $\beta_i / \beta_j \neq \rho_1 / \rho_2$.

A non-hypergeometric *E*-function by Fresán and Jossen

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^n.$$

The following calculations were done by Alin Bostan :

- A linear differential equation satisfied by f.
- Application of the Bostan–Rivoal–Salvy implementation of Adamczewski–Rivoal algorithm : *f* is purely transcendental.
- A differential operator annihilating ψ(f) with a minimal number of singularities : the roots ρ₁, ρ₂ and ρ₃ of

$$23z^3 + 128z^2 + 128z - 256.$$

• If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are non-zero and such that $\alpha_i / \alpha_j \neq \rho_k / \rho_\ell$, then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- Applications
- 5 Sketch of the proof

General statement

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all *i*. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary :
$$f_i(x) = f(\alpha_i x)$$
 with $\alpha_i / \alpha_j \neq \rho_1 / \rho_2$ and $\alpha = 1$.

<u>Hints</u> : By contradiction. Set $f_0 = 1$ and :

- Consider a non-trivial relation $\lambda_0 f_0(\alpha) + \cdots + \lambda_n f_n(\alpha) = 0$.
- André's theory of *E*-operators : f₀,..., f_n together with some derivatives form a vector solution of a system Y' = AY with only 0 and ∞ as singularities : αT(α) ≠ 0.
- Beuker's lifting result : there are linear differential operators \mathcal{L}_i with coeff. in $\overline{\mathbb{Q}}[z]$ s.t. $\mathcal{L}_0 f_0 + \cdots + \mathcal{L}_n f_n = 0$ and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.
- Laplace transform : $\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0.$

20 / 23

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

Lemma

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

<u>Hint</u> : By induction on the order and the degree of \mathcal{L}_i :

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f) \text{ and } \psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$$

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_i f_i \in \overline{\mathbb{Q}}[z]$ for all *i*.
- for all i, $\lambda_i f_i(\alpha) = (\mathcal{L}_i f_i)(\alpha) \in \overline{\mathbb{Q}}$.
- $\lambda_i \neq 0$ for at least one $i : f_i(\alpha) \in \overline{\mathbb{Q}}$, a contradiction.

What about the second formulation?

Question 3

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ linearly independent over \mathbb{Q} . Are $f(\alpha_1), \ldots, f(\alpha_n)$ algebraically independent over \mathbb{Q} ?

In the case of $f = \exp$, the Siegel–Shidlovskii theorem is sufficient because $\exp(\alpha_1 z), \ldots, \exp(\alpha_n z)$ are algebraically independent over $\overline{\mathbb{Q}}[z]$.

Thank you for your attention !