Cyclotomic valuation of q-Pochhammer symbols and q-Integrality of basic hypergeometric series

Frédéric Jouhet
Institut Camille Jordan - University Lyon 1

Atelier E-fonctions, G-fonctions et Périodes, IHP, January 2023
(joint work with B. Adamczewski, J. Bell, and É. Delaygue)

q-integers and q-factorials in combinatorics

Set q a formal parameter. Define $[0]_{q}:=0$ and $[n]_{q}:=1+q+\cdots+q^{n-1}$, $n>0$. Therefore the following extend n and $n!$, respectively :

$$
[n]_{q}=\frac{1-q^{n}}{1-q} \quad \text { and } \quad[n]!_{q}:=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}
$$

Classical combinatorial set \mathcal{P}_{n} : integer partitions λ of weight $|\lambda|$, with largest part $\leq n$ and length $\leq n$. Then

$$
\# \mathcal{P}_{n}=\binom{2 n}{n} \quad \text { and } \quad\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}:=\frac{[2 n]!_{q}}{[n]!_{q}^{2}}=\sum_{\lambda \in \mathcal{P}_{n}} q^{|\lambda|} \in \mathbb{N}[q]
$$

This q-binomial is also the number of vector subspaces of dimension n in a vector space of dimension $2 n$ over a finite field \mathbb{F}_{q}.

q-integers and cyclotomic polynomials

For a positive integer b, recall the b-th cyclotomic polynomial :

$$
\phi_{b}(q):=\prod_{\substack{1 \leq k \leq b \\(k, b)=1}}\left(q-\mathrm{e}^{2 i k \pi / b}\right) \in \mathbb{Z}[q]
$$

The role played by prime numbers for integers is now played by cyclotomic polynomials:

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=\prod_{b \geq 2, b \mid n} \phi_{b}(q) \Longrightarrow n=\prod_{b \geq 2, b \mid n} \phi_{b}(1)
$$

Recall $\phi_{b}(1)=1$ if b is divisible by at least two distinct primes, while $\phi_{p^{\ell}}(1)=p$ for p prime and $\ell>0$. "Finer" arithmetics for q-analogs :

$$
v_{p}(n)=\sum_{\ell \geq 1} v_{\phi_{p^{\ell}}}\left([n]_{q}\right)
$$

Factorial ratios

Famous class of sequences in combinatorics, number theory, mathematical physics, or geometry :

$$
Q_{e, f}(n):=\frac{\left(e_{1} n\right)!\cdots\left(e_{\vee} n\right)!}{\left(f_{1} n\right)!\cdots\left(f_{w} n\right)!}, \quad n \geq 0
$$

where $e:=\left(e_{1}, \ldots, e_{v}\right) \in \mathbb{Z}_{>0}^{v}$ and $f:=\left(f_{1}, \ldots, f_{w}\right) \in \mathbb{Z}_{>0}^{w}$.
Using Landau step functions :

$$
\Delta_{e, f}(x):=\sum_{i=1}^{v}\left\lfloor e_{i} x\right\rfloor-\sum_{j=1}^{w}\left\lfloor f_{j} x\right\rfloor
$$

their p-adic valuations:

$$
v_{p}\left(Q_{e, f}(n)\right)=\sum_{\ell \geq 1} \Delta_{e, f}\left(n / p^{\ell}\right)
$$

generalize the Legendre formula $v_{p}(n!)=\sum_{\ell \geq 1}\left\lfloor n / p^{\ell}\right\rfloor$

Arithmetic properties of factorial ratios

Assume $\sum_{i} e_{i}=\sum_{j} f_{j}$.
(i) Landau (1900), Bober (2009) : integrality.

$$
\forall n \geq 0, Q_{e, f}(n) \in \mathbb{Z} \Longleftrightarrow \forall x \in[0,1], \Delta_{e, f}(x) \geq 0
$$

(ii) Rodriguez-Villegas (2007), Beukers-Heckman (1989) : algebricity.

$$
\sum_{n=0}^{\infty} Q_{e, f}(n) x^{n} \text { is algebraic over } \mathbb{Q}(x) \Longleftrightarrow \forall x \in[0,1], \Delta_{e, f}(x) \in\{0,1\}
$$

Example. For $\Delta_{e, f}(x)=\lfloor 30 x\rfloor+\lfloor x\rfloor-\lfloor 15 x\rfloor-\lfloor 10 x\rfloor-\lfloor 6 x\rfloor \in\{0,1\}$, the following quotient is integral with an algebraic generating series ($\mathrm{R}-\mathrm{V}$: degree 483840) :

$$
\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!}
$$

q-factorial ratios

Recall

$$
[n]!_{q}:=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}=\prod_{b \geq 2} \phi_{b}(q)^{\lfloor n / b\rfloor}
$$

Thus Warnaar-Zudilin (2011), ABDJ (2017) :

$$
Q_{e, f}(q ; n):=\frac{\left[e_{1} n\right]!_{q} \cdots\left[e_{v} n\right]!_{q}}{\left[f_{1} n\right]!_{q} \cdots\left[f_{w} n\right]!_{q}}=\prod_{b \geq 2} \phi_{b}(q)^{\Delta_{e, f}(n / b)}
$$

and assuming $\sum_{i} e_{i}=\sum_{j} f_{j}$:

$$
\forall n \geq 0, Q_{e, f}(q ; n) \in \mathbb{Z}[q] \Longleftrightarrow \forall x \in[0,1], \Delta_{e, f}(x) \geq 0
$$

Example. $\Delta_{(2),(1,1)}(x)=\lfloor 2 x\rfloor-2\lfloor x\rfloor \geq 0$ on $[0,1]$.

Dwork map and Christol valuations of rising factorials

Pochhammer symbol : for $\alpha \in \mathbb{Q}$, set $(\alpha)_{n}:=\alpha(\alpha+1) \cdots(\alpha+n-1)$, so that $(1)_{n}=n!$.

Dwork maps (1973) : for a prime p satisfying $v_{p}(\alpha) \geq 0$, there exists a unique rational number $D_{p}(\alpha)$ whose denominator is not divisible by p and such that $p D_{p}(\alpha)-\alpha \in\{0, \ldots, p-1\}$.
Christol (1986), Delaygue-Rivoal-Roques (2017) :

$$
v_{p}\left((\alpha)_{n}\right)=\sum_{\ell \geq 1}\left\lfloor\frac{n-\lfloor 1-\alpha\rfloor}{p^{\ell}}-D_{p}^{\ell}(\alpha)+1\right\rfloor
$$

Example. We have $D_{5}(1 / 3)=2 / 3$, so that

$$
v_{5}\left((1 / 3)_{1}\right)=v_{5}\left((1 / 3)_{2}\right)=v_{5}\left((1 / 3)_{3}\right)=0 \text { and } v_{5}\left((1 / 3)_{4}\right)=1, \ldots
$$

When $\alpha=1$, we have $D_{p}(1)=1$ giving the Legendre formula.

Generalized hypergeometric terms

For $\boldsymbol{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{v}\right)$ and $\beta:=\left(\beta_{1}, \ldots, \beta_{w}\right)$ with coordinates in $\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$:

$$
Q_{\alpha, \beta}(n):=\frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{v}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{w}\right)_{n}} \in \mathbb{Q}, \quad n \geq 0
$$

Generalize $Q_{e, f}(n)$ up to \mathbb{Q}^{n}, as

$$
(d n)!=d^{d n}\left(\frac{1}{d}\right)_{n} \cdots\left(\frac{d-1}{d}\right)_{n}(1)_{n}
$$

Set $d_{\alpha, \beta}$ the Icm of the denominators of all α_{i}, β_{j}.
Christol (1986): step functions $\xi_{\alpha, \beta}(a, \cdot)$, for all $a \in\left\{1, \ldots, d_{\alpha, \beta}\right\}$ coprime to $d_{\alpha, \beta}$, which replace the Landau functions $\Delta_{e, f}$.

Christol step functions

Set $\langle x\rangle:=\{x\}$ if $x \notin \mathbb{Z}, 1$ else.
Christol order on $\mathbb{R}: x \preceq y \Longleftrightarrow(\langle x\rangle<\langle y\rangle$ or $(\langle x\rangle=\langle y\rangle$ and $x \geq y))$
Christol step functions defined for $a \in\left\{1, \ldots, d_{\alpha, \beta}\right\}$ coprime to $d_{\alpha, \beta}$:
$\xi_{\alpha, \beta}(a, x):=\#\left\{i \in\{1, \ldots, v\}: a \alpha_{i} \preceq x\right\}-\#\left\{j \in\{1, \ldots, w\}: a \beta_{j} \preceq x\right\}$

Example. For $\boldsymbol{\alpha}=(1 / 9,4 / 9,5 / 9)$ and $\boldsymbol{\beta}=(1 / 3,1,1)$, we have $d_{\alpha, \beta}=9$ and $\xi_{\alpha, \beta}(1, x) \geq 0, \xi_{\alpha, \beta}(2, x) \geq 0$ as their jumps are respectively given by

$$
\frac{1}{9} \preceq \frac{1}{3} \preceq \frac{4}{9} \preceq \frac{5}{9} \preceq 1 \preceq 1 \text { and } \frac{10}{9} \preceq \frac{2}{9} \preceq \frac{2}{3} \preceq \frac{8}{9} \preceq 2 \preceq 2
$$

Christol (1986) : N-integrality instead of integrality.
Delaygue-Rivoal-Roques (2017), Beukers-Heckman (1989) : interlacing criterion in terms of the step functions $\xi_{\alpha, \beta}(a, \cdot)$.

N-integrality of generalized hypergeometric sequences

The sequence $(R(n))_{n \geq 0}$ is N-integral if there exists an integer $N \neq 0$ such that $N^{n} R(n) \in \mathbb{Z}$ for all $n \geq 1$.

Theorem (Christol, 1986)

Let $\boldsymbol{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{v}\right)$ and $\boldsymbol{\beta}:=\left(\beta_{1}, \ldots, \beta_{w}\right)$ be two vectors with coordinates in $\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$. Then the two following assertions are equivalent.
(a) The hypergeometric sequence $\left(Q_{\alpha, \beta}(n)\right)_{n \geq 0}$ is N-integral.
(b) For all $x \in \mathbb{R}$ and $a \in\left\{1, \ldots, d_{\alpha, \beta}\right\}$ coprime to $d_{\alpha, \beta}, \xi_{\alpha, \beta}(a, x) \geq 0$.

Classical example by Christol, for $\boldsymbol{\alpha}=(1 / 9,4 / 9,5 / 9)$ and $\boldsymbol{\beta}=(1 / 3,1,1)$:

$$
Q_{\alpha, \beta}(n)=\frac{(1 / 9)_{n}(4 / 9)_{n}(5 / 9)_{n}}{(1 / 3)_{n}(1)_{n}^{2}}
$$

Then $d_{\alpha, \beta}=9$ and for the 6 values $a \in\{1, \ldots, 9\}$ coprime to 9 , we have $\xi_{\alpha, \beta}(a, x) \geq 0$ for all $x \in \mathbb{R}$. Therefore it is N-integral. Delaygue-Rivoal-Roques (2017) : smallest N (here $N=9^{3}$).

N-integrality and G-functions

The series $f(x)=\sum_{n \geq 0} a_{n} x^{n} \in \mathbb{Q}[[x]]$ is globally bounded if its radius of convergence is finite and positive, and $\left(a_{n}\right)_{n \geq 0}$ is N-integral.

If f is moreover holonomic over \mathbb{Q}, then it is a G-function.
Conjecture by Christol (1987) : all such G-functions are diagonals of rational fractions. Bostan-Yurkevich (2022) : many recent examples.
When $v \leq w$ and one of the β_{j} is 1 , the generalized hypergeometric series $\sum_{n \geq 0} Q_{\alpha, \beta}(n) x^{n}$ are holonomic. Therefore they belong to this particular subclass of G-functions if $v=w$ (radius of convergence 1) and the Christol criterion is satisfied.

Many of these are known to satisfy the Christol conjecture. But

$$
{ }_{3} F_{2}\left(\begin{array}{c}
1 / 9,4 / 9,5 / 9 \\
1 / 3,1
\end{array} ; x\right):=\sum_{n \geq 0} \frac{(1 / 9)_{n}(4 / 9)_{n}(5 / 9)_{n}}{(1 / 3)_{n}(1)_{n}^{2}} x^{n}
$$

is an example of G-function for which we do not know if it is a diagonal of a rational fraction.

Our three goals

- Define appropriately q-analogs of the generalized hypergeometric terms $Q_{\alpha, \beta}(n)$: they have to be different from (though related to) the ones appearing in classical basic hypergeometric series, and will be defined via the usual q-Pochhammer symbols $\left(q^{r} ; q^{s}\right)_{n}$.
- Find the ϕ_{b}-adic valuations of these $\left(q^{r} ; q^{s}\right)_{n}$: we will need to extend Dwork maps to all positive integers b, and be able to find a uniform answer for any integers r, s, n.
- Prove an effective criterion of q-integrality for our q-generalized hypergeometric terms : a sequence $(R(q ; n))_{n \geq 0}$ with values in $\mathbb{Q}(q)$ is said to be q-integral if there exists $N(q) \in \mathbb{Z}[q] \backslash\{0\}$ such that $N(q)^{n} R(q ; n) \in \mathbb{Z}[q]$ for all $n \geq 1$.
We will need generalizations of Christol step functions.

q-analogs of rising factorials for rational numbers

Recall for $n \in \mathbb{Z}_{\geq 0}$ the q-Pochhammer symbol $(a ; q)_{n}:=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$. Given $\alpha=r / s \in \mathbb{Q}$, note that

$$
\lim _{q \rightarrow 1} \frac{\left(q^{\alpha} ; q\right)_{n}}{(1-q)^{n}}=\lim _{q \rightarrow 1} \frac{\left(q^{r} ; q^{s}\right)_{n}}{\left(1-q^{s}\right)^{n}}=(\alpha)_{n}
$$

Which of these two choices is appropriate, the classical one or the second? Note that the second is obtained by setting $q \rightarrow q^{s}$ in the first... For ϕ_{b}-valuations and q-integrality, enough to consider for $(r, s) \in \mathbb{Z} \times \mathbb{Z}^{*}$:

$$
\left(q^{r} ; q^{s}\right)_{n}=\prod_{i=0}^{n-1}\left(1-q^{r+s i}\right) \in \mathbb{Z}\left[q^{-1}, q\right]
$$

This is $\neq 0$ iff $r / s \notin \mathbb{Z}_{\leq 0}$ or $n \leq-r / s$.
In combinatorics, for positive $r, s,\left(q^{r} ; q^{s}\right)_{n}^{-1}$ is the generating series of integer partitions with parts congruent to $r \bmod s$ and largest part $\leq r+(n-1) s$.

ϕ_{b}-valuations of q-Pochhammer symbols

Proposition (ABDJ, 2022)

Set $b \in \mathbb{Z}_{>0}$ and the multiplicative set $S_{b}:=\{k \in \mathbb{Z}: \operatorname{gcd}(k, b)=1\}$. Let $\alpha \in S_{b}^{-1} \mathbb{Z}$, the localization of \mathbb{Z} by S_{b}. Then there is a unique element $D_{b}(\alpha) \in S_{b}^{-1} \mathbb{Z}$ such that $b D_{b}(\alpha)-\alpha \in\{0, \ldots, b-1\}$.

Example. $D_{4}(1 / 3)=1 / 3$
Theorem (ABDJ, 2022)
Let $(r, s) \in \mathbb{Z} \times \mathbb{Z}^{*}, \alpha:=r / s, c:=\operatorname{gcd}(r, s, b), b^{\prime}:=b / c$, and $s^{\prime}:=s / c$. Let $n \in \mathbb{Z}_{\geq 0}$ be such that $\left(q^{r} ; q^{s}\right)_{n}$ is non-zero. Then

$$
v_{\phi_{b}}\left(\left(q^{r} ; q^{s}\right)_{n}\right)=\left\lfloor\frac{c n}{b}-\frac{\lfloor 1-\alpha\rfloor}{b^{\prime}}-D_{b^{\prime}}(\alpha)+1\right\rfloor
$$

if $\operatorname{gcd}\left(s^{\prime}, b^{\prime}\right)=1$ and 0 otherwise.

Special cases

Our result holds for r, s non necessarily coprime (and any positive b), but when $\operatorname{gcd}(r, s)=1$ and $v_{p}\left((r / s)_{n}\right) \geq 0$, it extends Christol's result :

$$
v_{p}\left((r / s)_{n}\right)=\sum_{\ell \geq 1} v_{\phi_{p^{\ell}}}\left(\frac{\left(q^{r} ; q^{s}\right)_{n}}{\left(1-q^{s}\right)^{n}}\right)
$$

For $(r, s, b)=(2,6,8)$, we get $c=\operatorname{gcd}(2,6,8)=2, s^{\prime}=3$ and $b^{\prime}=4$, so

$$
\begin{aligned}
v_{\phi_{8}}\left(\left(q^{2} ; q^{6}\right)_{n}\right) & =\left\lfloor\frac{2 n}{8}-\frac{\lfloor 1-1 / 3\rfloor}{4}-D_{4}(1 / 3)+1\right\rfloor \\
& =\left\lfloor\frac{n}{4}+\frac{2}{3}\right\rfloor=\left\lfloor\frac{3 n+8}{12}\right\rfloor
\end{aligned}
$$

while $\phi_{8}(q)=q^{4}+1$ and $\left(q^{2} ; q^{6}\right)_{n}=\left(1-q^{2}\right)\left(1-q^{8}\right) \ldots\left(1-q^{2+6 n-6}\right)$.

q-hypergeometric sequences

Set $\left(r_{i}, s_{i}\right),\left(t_{j}, u_{j}\right)$ pairs of integers with $s_{i}, u_{j} \neq 0$ and

$$
\mathbf{r}:=\left(\left(r_{1}, s_{1}\right), \ldots,\left(r_{v}, s_{v}\right)\right) \quad \text { and } \quad \mathbf{t}:=\left(\left(t_{1}, u_{1}\right), \ldots,\left(t_{w}, u_{w}\right)\right)
$$

Define the q-hypergeometric sequence :

$$
\mathcal{Q}_{\mathrm{r}, \mathrm{t}}(q ; n):=\frac{\left(q^{r_{1}} ; q^{s_{1}}\right)_{n} \cdots\left(q^{r_{v}} ; q^{s_{v}}\right)_{n}}{\left(q^{t_{1}} ; q^{u_{1}}\right)_{n} \cdots\left(q^{t_{w}} ; q^{u_{w}}\right)_{n}} \quad n \geq 0
$$

To study q-integrality : well-defined $\forall n \geq 0$ when $\beta_{j}:=t_{j} / u_{j} \notin \mathbb{Z}_{\leq 0}$, never vanish when $\alpha_{i}:=r_{i} / s_{i} \notin \mathbb{Z}_{\leq 0}$.
Suitable q-analogs :

$$
\lim _{q \rightarrow 1}\left(\frac{\prod_{j=1}^{w}\left(1-q^{u_{j}}\right)}{\prod_{i=1}^{v}\left(1-q^{s_{i}}\right)}\right)^{n} \mathcal{Q}_{\mathbf{r}, \mathbf{t}}(q ; n)=Q_{\alpha, \beta}(n)
$$

A generalization of Christol step functions

Set $\alpha_{i}=r_{i} / s_{i}, \beta_{j}=t_{j} / u_{j}$, and $d_{\mathbf{r}, \mathrm{t}} \operatorname{Icm}$ of all s_{i}, u_{j}. Set $c_{i}:=\operatorname{gcd}\left(r_{i}, s_{i}, b\right)$ and $d_{j}:=\operatorname{gcd}\left(t_{j}, u_{j}, b\right)$. Consider
$V_{b}:=\left\{1 \leq i \leq v: \operatorname{gcd}\left(s_{i}, b\right)=c_{i}\right\} \quad W_{b}:=\left\{1 \leq j \leq w: \operatorname{gcd}\left(u_{j}, b\right)=d_{j}\right\}$
For such i, j, there exist positive integers e_{i}, f_{j} with $b e_{i} \equiv c_{i} \bmod s_{i}$ and $b f_{j} \equiv d_{j} \bmod u_{j}$.
Let \tilde{b} be the greatest divisor of b coprime to $d_{\mathbf{r}, \mathrm{t}}$ and let a be the unique element of $\left\{1, \ldots, d_{r, t}\right\}$ satisfying $a \tilde{b} \equiv 1 \bmod d_{r, t}$.
For $b \in\left\{1, \ldots, d_{\mathbf{r}, \mathbf{t}}\right\}$, define the step function $\bar{\Xi}_{\mathbf{r}, \mathbf{t}}(b, x)$ as

$$
\begin{aligned}
& \#\left\{(i, k) \in V_{b} \times\left\{0, \ldots, c_{i}-1\right\}: \frac{\left\langle e_{i} \alpha_{i}\right\rangle+k}{c_{i}}-\left\lfloor 1-a \alpha_{i}\right\rfloor \preceq x\right\} \\
& -\#\left\{(j, \ell) \in W_{b} \times\left\{0, \ldots, d_{j}-1\right\}: \frac{\left\langle f_{j} \beta_{j}\right\rangle+\ell}{d_{j}}-\left\lfloor 1-a \beta_{j}\right\rfloor \preceq x\right\} .
\end{aligned}
$$

If b is coprime to $d_{r, t}$, they are equal to Christol step functions
$\xi_{\alpha, \beta}(a, x):=\#\left\{i \in\{1, \ldots, v\}: a \alpha_{i} \preceq x\right\}-\#\left\{j \in\{1, \ldots, w\}: a \beta_{j} \preceq x\right\}$

An example : q-analog of Christol's one

Consider

$$
\mathcal{Q}_{\mathrm{r}, \mathrm{t}}(q ; n)=\frac{\left(q ; q^{9}\right)_{n}\left(q^{4} ; q^{9}\right)_{n}\left(q^{5} ; q^{9}\right)_{n}}{\left(q ; q^{3}\right)_{n}(q ; q)_{n}^{2}}
$$

We saw $d_{\mathbf{r}, \mathbf{t}}=9$. So the only new step functions to consider are the one associated with $b \in\{3,6,9\}$.
For $b=3$, we have $a=\tilde{b}=1$ and $c_{1}=c_{2}=c_{3}=1, d_{1}=d_{2}=d_{3}=1$. Moreover $V_{3}=\emptyset$ and $W_{3}=\{2,3\}$ with $f_{2}=f_{3}=1$. So we get

$$
\begin{aligned}
\overline{\mathrm{Ir}, \mathrm{t}}(3, x) & =-\#\left\{(j, \ell) \in\{2,3\} \times\{0\}: \frac{\left\langle f_{j} \beta_{j}\right\rangle+\ell}{d_{j}}-\left\lfloor 1-a \beta_{j}\right\rfloor \preceq x\right\} \\
& =-\#\left\{j \in\{2,3\}:\left\langle\beta_{j}\right\rangle-\left\lfloor 1-\beta_{j}\right\rfloor \preceq x\right\}
\end{aligned}
$$

Note that $\overline{\mathrm{E}}_{\mathrm{r}, \mathrm{t}}(3,1)<0$.

An effective q-integrality criterion

Theorem (ABDJ, 2022)

Assume that $Q_{r, t}(q ; n)$ is well-defined and non zero, and s_{1}, \ldots, s_{V} are positive. Then the two following assertions are equivalent.
(i) The sequence $\left(Q_{r, t}(q ; n)\right)_{n \geq 0}$ is q-integral.
(ii) For every $b \in\left\{1, \ldots, d_{r, t}\right\}$ and all x in \mathbb{R}, we have $\Xi_{r, t}(b, x) \geq 0$.
q-integrality implies N-integrality. Converse not always true : depends on the behaviour of $\Xi_{r, t}(b, \cdot)$ for b not coprime to $d_{r, t}$.

Example. $\mathbf{r}=((1,9),(4,9),(5,9))$ and $\mathbf{t}=((1,3),(1,1),(1,1))$. The classical Christol functions satisfy the criterion for b coprime to 9 . Not for all $b \in\{3,6,9\}$, as $\bar{\Xi}_{\mathrm{r}, \mathrm{t}}(3,1)<0$.
Thus $\left(Q_{r, t}(q ; n)\right)_{n \geq 0}$ is not q-integral.

Back to Christol's example

We saw our q-analog of Christol's example was not q-integral. But this one is :

$$
\frac{\left(q ; q^{9}\right)_{n}\left(q^{4} ; q^{9}\right)_{n}\left(q^{5} ; q^{9}\right)_{n}\left(q^{9} ; q^{9}\right)_{n}}{\left(q ; q^{3}\right)_{n}(q ; q)_{n}^{3}}
$$

The $q^{1 / 9}$-integrality of $\widetilde{Q}_{\alpha, \beta}(q ; n):=\frac{\left(q^{1 / 9} ; q\right)_{n}\left(q^{4 / 9} ; q\right)_{n}\left(q^{5 / 9} ; q\right)_{n}}{\left(q^{1 / 3} ; q\right)_{n}(q ; q)_{n}^{2}}$ is equivalent to the q-integrality of

$$
\widetilde{Q}_{\alpha, \beta}\left(q^{9} ; n\right)=\frac{\left(q ; q^{9}\right)_{n}\left(q^{4} ; q^{9}\right)_{n}\left(q^{5} ; q^{9}\right)_{n}}{\left(q^{3} ; q^{9}\right)_{n}\left(q^{9} ; q^{9}\right)_{n}^{2}}=: \mathcal{Q}_{\mathrm{r}, \mathrm{t}}(q ; n)
$$

for a suitable choice of vectors \mathbf{r}, \mathbf{t}.
We prove $\left(\mathcal{Q}_{\mathrm{r}, \mathrm{t}}(q ; n)\right)_{n \geq 0}$ not q-integral. The above trick fails: multiplying $\mathcal{Q}_{\mathrm{r}, \mathbf{t}}(q ; n)$ by $\left(q^{9} ; q^{9}\right)_{n} /(q ; q)_{n}$ amounts to multiplying $\widetilde{Q}_{\alpha, \beta}(q ; n)$ by $(q ; q)_{n} /\left(q^{1 / 9} ; q^{1 / 9}\right)_{n}$ which does not correspond to any choice of parameters α and β.

