Cyclotomic valuation of *q*-Pochhammer symbols and *q*-Integrality of basic hypergeometric series

Frédéric Jouhet

Institut Camille Jordan - University Lyon 1

Atelier E-fonctions, G-fonctions et Périodes, IHP, January 2023

(joint work with B. Adamczewski, J. Bell, and É. Delaygue)

Set *q* a formal parameter. Define $[0]_q := 0$ and $[n]_q := 1 + q + \cdots + q^{n-1}$, n > 0. Therefore the following extend *n* and *n*!, respectively :

$$[n]_q = \frac{1-q^n}{1-q}$$
 and $[n]!_q := \prod_{i=1}^n \frac{1-q^i}{1-q}$

Classical combinatorial set \mathcal{P}_n : integer partitions λ of weight $|\lambda|$, with largest part $\leq n$ and length $\leq n$. Then

$$\#\mathcal{P}_n = \begin{pmatrix} 2n \\ n \end{pmatrix}$$
 and $\begin{bmatrix} 2n \\ n \end{bmatrix}_q := \frac{[2n]!_q}{[n]!_q^2} = \sum_{\lambda \in \mathcal{P}_n} q^{|\lambda|} \in \mathbb{N}[q]$

This *q*-binomial is also the number of vector subspaces of dimension *n* in a vector space of dimension 2n over a finite field \mathbb{F}_q .

q-integers and cyclotomic polynomials

For a positive integer b, recall the b-th cyclotomic polynomial :

$$\phi_b(q) \coloneqq \prod_{\substack{1 \leq k \leq b \ (k,b) \equiv 1}} (q - \mathrm{e}^{2ik\pi/b}) \in \mathbb{Z}[q]$$

The role played by prime numbers for integers is now played by cyclotomic polynomials :

$$[n]_q = \frac{1-q^n}{1-q} = \prod_{b \ge 2, \ b|n} \phi_b(q) \Longrightarrow n = \prod_{b \ge 2, \ b|n} \phi_b(1)$$

Recall $\phi_b(1) = 1$ if b is divisible by at least two distinct primes, while $\phi_{p\ell}(1) = p$ for p prime and $\ell > 0$. "Finer" arithmetics for q-analogs :

$$v_p(n) = \sum_{\ell \ge 1} v_{\phi_{p^\ell}}([n]_q)$$

Factorial ratios

Famous class of sequences in combinatorics, number theory, mathematical physics, or geometry :

$$Q_{e,f}(n) := rac{(e_1 n)! \cdots (e_v n)!}{(f_1 n)! \cdots (f_w n)!}, \quad n \ge 0$$

where $e := (e_1, \ldots, e_v) \in \mathbb{Z}_{>0}^v$ and $f := (f_1, \ldots, f_w) \in \mathbb{Z}_{>0}^w$. Using Landau step functions :

$$\Delta_{e,f}(x) := \sum_{i=1}^{\nu} \lfloor e_i x \rfloor - \sum_{j=1}^{w} \lfloor f_j x \rfloor$$

their *p*-adic valuations :

$$v_p(Q_{e,f}(n)) = \sum_{\ell \geq 1} \Delta_{e,f}(n/p^\ell)$$

generalize the Legendre formula $v_p(n!) = \sum_{\ell > 1} \lfloor n/p^\ell \rfloor$

Arithmetic properties of factorial ratios

Assume $\sum_{i} e_{i} = \sum_{j} f_{j}$. (i) Landau (1900), Bober (2009) : integrality.

 $\forall n \geq 0, \ Q_{e,f}(n) \in \mathbb{Z} \iff \forall x \in [0,1], \ \Delta_{e,f}(x) \geq 0$

(ii) Rodriguez-Villegas (2007), Beukers-Heckman (1989) : algebricity.

 $\sum_{n=0}^{\infty} Q_{e,f}(n) x^n \text{ is algebraic over } \mathbb{Q}(x) \Longleftrightarrow \forall x \in [0,1], \ \Delta_{e,f}(x) \in \{0,1\}$

Example. For $\Delta_{e,f}(x) = \lfloor 30x \rfloor + \lfloor x \rfloor - \lfloor 15x \rfloor - \lfloor 10x \rfloor - \lfloor 6x \rfloor \in \{0,1\}$, the following quotient is integral with an algebraic generating series (R-V : degree 483 840) :

 $\frac{(30n)!n!}{(15n)!(10n)!(6n)!}$

Recall

$$[n]!_q := \prod_{i=1}^n \frac{1-q^i}{1-q} = \prod_{b\geq 2} \phi_b(q)^{\lfloor n/b \rfloor}$$

Thus Warnaar–Zudilin (2011), ABDJ (2017) :

$$Q_{e,f}(q;n) := \frac{[e_1n]!_q \cdots [e_vn]!_q}{[f_1n]!_q \cdots [f_wn]!_q} = \prod_{b \ge 2} \phi_b(q)^{\Delta_{e,f}(n/b)}$$

and assuming $\sum_i e_i = \sum_j f_j$:

 $\forall n \geq 0, \ Q_{e,f}(q;n) \in \mathbb{Z}[q] \iff \forall x \in [0,1], \ \Delta_{e,f}(x) \geq 0$

Example. $\Delta_{(2),(1,1)}(x) = \lfloor 2x \rfloor - 2\lfloor x \rfloor \ge 0$ on [0,1].

Dwork map and Christol valuations of rising factorials

Pochhammer symbol : for $\alpha \in \mathbb{Q}$, set $(\alpha)_n := \alpha(\alpha + 1) \cdots (\alpha + n - 1)$, so that $(1)_n = n!$.

Dwork maps (1973) : for a prime p satisfying $v_p(\alpha) \ge 0$, there exists a unique rational number $D_p(\alpha)$ whose denominator is not divisible by p and such that $pD_p(\alpha) - \alpha \in \{0, \ldots, p-1\}$.

Christol (1986), Delaygue–Rivoal–Roques (2017) :

$$v_{p}((\alpha)_{n}) = \sum_{\ell \geq 1} \left\lfloor \frac{n - \lfloor 1 - \alpha
floor}{p^{\ell}} - D_{p}^{\ell}(\alpha) + 1
ight
floor$$

Example. We have $D_5(1/3) = 2/3$, so that

 $v_5((1/3)_1) = v_5((1/3)_2) = v_5((1/3)_3) = 0$ and $v_5((1/3)_4) = 1, \dots$

When $\alpha = 1$, we have $D_p(1) = 1$ giving the Legendre formula.

For $\alpha := (\alpha_1, \ldots, \alpha_v)$ and $\beta := (\beta_1, \ldots, \beta_w)$ with coordinates in $\mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$:

$$Q_{\alpha,\beta}(n) := \frac{(\alpha_1)_n \cdots (\alpha_v)_n}{(\beta_1)_n \cdots (\beta_w)_n} \in \mathbb{Q}, \qquad n \ge 0$$

Generalize $Q_{e,f}(n)$ up to \mathbb{Q}^n , as

$$(dn)! = d^{dn} \left(\frac{1}{d}\right)_n \cdots \left(\frac{d-1}{d}\right)_n (1)_n$$

Set $d_{\alpha,\beta}$ the lcm of the denominators of all α_i , β_j . Christol (1986) : step functions $\xi_{\alpha,\beta}(a, \cdot)$, for all $a \in \{1, \ldots, d_{\alpha,\beta}\}$ coprime to $d_{\alpha,\beta}$, which replace the Landau functions $\Delta_{e,f}$.

Christol step functions

Set $\langle x \rangle := \{x\}$ if $x \notin \mathbb{Z}$, 1 else.

Christol order on \mathbb{R} : $x \leq y \iff (\langle x \rangle < \langle y \rangle \text{ or } (\langle x \rangle = \langle y \rangle \text{ and } x \geq y))$ Christol step functions defined for $a \in \{1, \dots, d_{\alpha, \beta}\}$ coprime to $d_{\alpha, \beta}$:

 $\xi_{\alpha,\beta}(a,x) := \#\{i \in \{1, \dots, v\} : a\alpha_i \leq x\} - \#\{j \in \{1, \dots, w\} : a\beta_j \leq x\}$

Example. For $\alpha = (1/9, 4/9, 5/9)$ and $\beta = (1/3, 1, 1)$, we have $d_{\alpha,\beta} = 9$ and $\xi_{\alpha,\beta}(1,x) \ge 0$, $\xi_{\alpha,\beta}(2,x) \ge 0$ as their jumps are respectively given by

$$\frac{1}{9} \preceq \frac{1}{3} \preceq \frac{4}{9} \preceq \frac{5}{9} \preceq 1 \preceq 1 \text{ and } \frac{10}{9} \preceq \frac{2}{9} \preceq \frac{2}{3} \preceq \frac{8}{9} \preceq 2 \preceq 2$$

Christol (1986) : *N*-integrality instead of integrality. Delaygue–Rivoal–Roques (2017), Beukers–Heckman (1989) : interlacing criterion in terms of the step functions $\xi_{\alpha,\beta}(a,\cdot)$.

N-integrality of generalized hypergeometric sequences

The sequence $(R(n))_{n\geq 0}$ is N-integral if there exists an integer $N \neq 0$ such that $N^n R(n) \in \mathbb{Z}$ for all $n \geq 1$.

Theorem (Christol, 1986)

Let $\alpha := (\alpha_1, \dots, \alpha_{\nu})$ and $\beta := (\beta_1, \dots, \beta_w)$ be two vectors with coordinates in $\mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$. Then the two following assertions are equivalent. (a) The hypergeometric sequence $(Q_{\alpha,\beta}(n))_{n\geq 0}$ is *N*-integral. (b) For all $x \in \mathbb{R}$ and $a \in \{1, \dots, d_{\alpha,\beta}\}$ coprime to $d_{\alpha,\beta}$, $\xi_{\alpha,\beta}(a, x) \geq 0$.

Classical example by Christol, for $\alpha = (1/9, 4/9, 5/9)$ and $\beta = (1/3, 1, 1)$:

$$Q_{\alpha,\beta}(n) = \frac{(1/9)_n(4/9)_n(5/9)_n}{(1/3)_n(1)_n^2}$$

Then $d_{\alpha,\beta} = 9$ and for the 6 values $a \in \{1, \dots, 9\}$ coprime to 9, we have $\xi_{\alpha,\beta}(a,x) \ge 0$ for all $x \in \mathbb{R}$. Therefore it is *N*-integral. Delaygue–Rivoal–Roques (2017) : smallest *N* (here $N = 9^3$).

N-integrality and G-functions

The series $f(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{Q}[[x]]$ is globally bounded if its radius of convergence is finite and positive, and $(a_n)_{n \ge 0}$ is *N*-integral.

If f is moreover holonomic over \mathbb{Q} , then it is a G-function.

Conjecture by Christol (1987) : all such G-functions are diagonals of rational fractions. Bostan–Yurkevich (2022) : many recent examples.

When $v \leq w$ and one of the β_j is 1, the generalized hypergeometric series $\sum_{n\geq 0} Q_{\alpha,\beta}(n)x^n$ are holonomic. Therefore they belong to this particular subclass of *G*-functions if v = w (radius of convergence 1) and the Christol criterion is satisfied.

Many of these are known to satisfy the Christol conjecture. But

$$_{3}F_{2}\binom{1/9,4/9,5/9}{1/3,1}$$
; x := $\sum_{n>0} \frac{(1/9)_{n}(4/9)_{n}(5/9)_{n}}{(1/3)_{n}(1)_{n}^{2}} x^{n}$

is an example of G-function for which we do not know if it is a diagonal of a rational fraction.

Jouhet (ICJ, Lyon 1)

- Define appropriately q-analogs of the generalized hypergeometric terms $Q_{\alpha,\beta}(n)$: they have to be different from (though related to) the ones appearing in classical basic hypergeometric series, and will be defined via the usual q-Pochhammer symbols $(q^r; q^s)_n$.
- Find the φ_b-adic valuations of these (q^r; q^s)_n : we will need to extend Dwork maps to all positive integers b, and be able to find a uniform answer for any integers r, s, n.
- Prove an effective criterion of *q*-integrality for our *q*-generalized hypergeometric terms : a sequence (*R*(*q*; *n*))_{*n*≥0} with values in Q(*q*) is said to be *q*-integral if there exists *N*(*q*) ∈ Z[*q*] \ {0} such that *N*(*q*)^{*n*}*R*(*q*; *n*) ∈ Z[*q*] for all *n* ≥ 1. We will need generalizations of Christol step functions.

q-analogs of rising factorials for rational numbers

Recall for $n \in \mathbb{Z}_{\geq 0}$ the *q*-Pochhammer symbol $(a; q)_n := \prod_{i=0}^{n-1} (1 - aq^i)$. Given $\alpha = r/s \in \mathbb{Q}$, note that

$$\lim_{q \to 1} \frac{(q^{\alpha}; q)_n}{(1-q)^n} = \lim_{q \to 1} \frac{(q^r; q^s)_n}{(1-q^s)^n} = (\alpha)_n$$

Which of these two choices is appropriate, the classical one or the second ? Note that the second is obtained by setting $q \to q^s$ in the first... For ϕ_b -valuations and q-integrality, enough to consider for $(r, s) \in \mathbb{Z} \times \mathbb{Z}^*$:

$$(q^r;q^s)_n = \prod_{i=0}^{n-1} (1-q^{r+si}) \in \mathbb{Z}[q^{-1},q]$$

This is $\neq 0$ iff $r/s \notin \mathbb{Z}_{\leq 0}$ or $n \leq -r/s$.

In combinatorics, for positive r, s, $(q^r; q^s)_n^{-1}$ is the generating series of integer partitions with parts congruent to $r \mod s$ and largest part $\leq r + (n-1)s$.

Jouhet (ICJ, Lyon 1)

Proposition (ABDJ, 2022)

Set $b \in \mathbb{Z}_{>0}$ and the multiplicative set $S_b := \{k \in \mathbb{Z} : \gcd(k, b) = 1\}$. Let $\alpha \in S_b^{-1}\mathbb{Z}$, the localization of \mathbb{Z} by S_b . Then there is a unique element $D_b(\alpha) \in S_b^{-1}\mathbb{Z}$ such that $bD_b(\alpha) - \alpha \in \{0, \ldots, b-1\}$.

Example. $D_4(1/3) = 1/3$

Theorem (ABDJ, 2022)

Let $(r, s) \in \mathbb{Z} \times \mathbb{Z}^*$, $\alpha := r/s$, c := gcd(r, s, b), b' := b/c, and s' := s/c. Let $n \in \mathbb{Z}_{\geq 0}$ be such that $(q^r; q^s)_n$ is non-zero. Then

$$\mathsf{v}_{\phi_b}((q^r;q^s)_n) = \left\lfloor rac{cn}{b} - rac{\lfloor 1 - lpha
floor}{b'} - \mathcal{D}_{b'}\left(lpha
ight) + 1
ight
floor$$

if gcd(s', b') = 1 and 0 otherwise.

Special cases

Our result holds for r, s non necessarily coprime (and any positive b), but when gcd(r, s) = 1 and $v_p((r/s)_n) \ge 0$, it extends Christol's result :

$$v_p((r/s)_n) = \sum_{\ell \ge 1} v_{\phi_{p^\ell}} \left(\frac{(q^r; q^s)_n}{(1-q^s)^n} \right)$$

For (r, s, b) = (2, 6, 8), we get c = gcd(2, 6, 8) = 2, s' = 3 and b' = 4, so

$$\begin{array}{ll} \mathsf{v}_{\phi_8}((q^2;q^6)_n) & = & \left\lfloor \frac{2n}{8} - \frac{\lfloor 1 - 1/3 \rfloor}{4} - D_4 \left(1/3 \right) + 1 \right\rfloor \\ & = & \left\lfloor \frac{n}{4} + \frac{2}{3} \right\rfloor = \left\lfloor \frac{3n+8}{12} \right\rfloor \end{array}$$

while $\phi_8(q) = q^4 + 1$ and $(q^2; q^6)_n = (1 - q^2)(1 - q^8) \dots (1 - q^{2+6n-6})$.

q-hypergeometric sequences

Set $(r_i, s_i), (t_j, u_j)$ pairs of integers with $s_i, u_j \neq 0$ and $\mathbf{r} := ((r_1, s_1), \dots, (r_v, s_v))$ and $\mathbf{t} := ((t_1, u_1), \dots, (t_w, u_w))$

Define the *q*-hypergeometric sequence :

$$\mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n) := \frac{(q^{r_1};q^{s_1})_n \cdots (q^{r_v};q^{s_v})_n}{(q^{t_1};q^{u_1})_n \cdots (q^{t_w};q^{u_w})_n} \qquad n \ge 0$$

To study *q*-integrality : well-defined $\forall n \ge 0$ when $\beta_j := t_j/u_j \notin \mathbb{Z}_{\le 0}$, never vanish when $\alpha_i := r_i/s_i \notin \mathbb{Z}_{\le 0}$.

Suitable *q*-analogs :

$$\lim_{q\to 1} \left(\frac{\prod_{j=1}^{w}(1-q^{u_j})}{\prod_{i=1}^{v}(1-q^{s_i})}\right)^n \mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n) = Q_{\alpha,\beta}(n)$$

A generalization of Christol step functions

Set $\alpha_i = r_i/s_i$, $\beta_j = t_j/u_j$, and $d_{r,t}$ lcm of all s_i , u_j . Set $c_i := \text{gcd}(r_i, s_i, b)$ and $d_j := \text{gcd}(t_j, u_j, b)$. Consider

 $V_b := \{1 \le i \le v : \gcd(s_i, b) = c_i\} \quad W_b := \{1 \le j \le w : \gcd(u_j, b) = d_j\}$

For such *i*, *j*, there exist positive integers e_i , f_j with $be_i \equiv c_i \mod s_i$ and $bf_i \equiv d_j \mod u_j$.

Let \tilde{b} be the greatest divisor of b coprime to $d_{r,t}$ and let a be the unique element of $\{1, \ldots, d_{r,t}\}$ satisfying $a\tilde{b} \equiv 1 \mod d_{r,t}$. For $b \in \{1, \ldots, d_{r,t}\}$, define the step function $\Xi_{r,t}(b, x)$ as

If *b* is coprime to $d_{r,t}$, they are equal to Christol step functions

 $\xi_{\alpha,\beta}(a,x) := \#\{i \in \{1,\ldots,v\} : a\alpha_i \leq x\} - \#\{j \in \{1,\ldots,w\} : a\beta_j \leq x\}$

An example : q-analog of Christol's one

Consider

$$\mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n) = \frac{(q;q^9)_n(q^4;q^9)_n(q^5;q^9)_n}{(q;q^3)_n(q;q)_n^2}$$

We saw $d_{r,t} = 9$. So the only new step functions to consider are the one associated with $b \in \{3, 6, 9\}$.

For b = 3, we have $a = \tilde{b} = 1$ and $c_1 = c_2 = c_3 = 1$, $d_1 = d_2 = d_3 = 1$. Moreover $V_3 = \emptyset$ and $W_3 = \{2, 3\}$ with $f_2 = f_3 = 1$. So we get

$$\Xi_{\mathbf{r},\mathbf{t}}(3,x) = -\#\left\{ (j,\ell) \in \{2,3\} \times \{0\} : \frac{\langle f_j\beta_j \rangle + \ell}{d_j} - \lfloor 1 - a\beta_j \rfloor \preceq x \right\}$$
$$= -\#\left\{ j \in \{2,3\} : \langle \beta_j \rangle - \lfloor 1 - \beta_j \rfloor \preceq x \right\}$$

Note that $\Xi_{\mathbf{r},\mathbf{t}}(3,1) < 0$.

Theorem (ABDJ, 2022)

Assume that $Q_{r,t}(q; n)$ is well-defined and non zero, and s_1, \ldots, s_v are positive. Then the two following assertions are equivalent.

(i) The sequence $(Q_{\mathbf{r},\mathbf{t}}(q;n))_{n\geq 0}$ is q-integral.

(ii) For every $b \in \{1, \ldots, d_{r,t}\}$ and all x in \mathbb{R} , we have $\Xi_{r,t}(b, x) \ge 0$.

q-integrality implies *N*-integrality. Converse not always true : depends on the behaviour of $\Xi_{\mathbf{r},\mathbf{t}}(b,\cdot)$ for *b* not coprime to $d_{\mathbf{r},\mathbf{t}}$.

Example. $\mathbf{r} = ((1,9), (4,9), (5,9))$ and $\mathbf{t} = ((1,3), (1,1), (1,1))$. The classical Christol functions satisfy the criterion for *b* coprime to 9. Not for all $b \in \{3, 6, 9\}$, as $\Xi_{\mathbf{r},\mathbf{t}}(3,1) < 0$.

Thus $(Q_{\mathbf{r},\mathbf{t}}(q;n))_{n\geq 0}$ is not q-integral.

Back to Christol's example

We saw our q-analog of Christol's example was not q-integral. But this one is :

$$\frac{(q;q^9)_n(q^4;q^9)_n(q^5;q^9)_n(q^9;q^9)_n}{(q;q^3)_n(q;q)_n^3}$$

The $q^{1/9}$ -integrality of $\widetilde{Q}_{\alpha,\beta}(q;n) := \frac{(q^{1/9};q)_n(q^{4/9};q)_n(q^{5/9};q)_n}{(q^{1/3};q)_n(q;q)_n^2}$ is equivalent to the q-integrality of

$$\widetilde{Q}_{\alpha,\beta}(q^9;n) = \frac{(q;q^9)_n(q^4;q^9)_n(q^5;q^9)_n}{(q^3;q^9)_n(q^9;q^9)_n^2} =: \mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n)$$

for a suitable choice of vectors **r**, **t**.

We prove $(\mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n))_{n\geq 0}$ not *q*-integral. The above trick fails : multiplying $\mathcal{Q}_{\mathbf{r},\mathbf{t}}(q;n)$ by $(q^9;q^9)_n/(q;q)_n$ amounts to multiplying $\widetilde{\mathcal{Q}}_{\alpha,\beta}(q;n)$ by $(q;q)_n/(q^{1/9};q^{1/9})_n$ which does not correspond to any choice of parameters α and β .

Jouhet (ICJ, Lyon 1)