Introduction to E-functions

Frits Beukers

Atélier E-fonctions, G-fonction et périodes
Paris, 9 Janvier 2023

A general transcendence problem

Let $f(z) \in \overline{\mathbb{Q}}[[z]]$ be power series in z with coefficients in $\overline{\mathbb{Q}}$, with positive radius of convergence ρ. We assume $f(z)$ is not algebraic over $\overline{\mathbb{Q}}(z)$.

Question

Let $\alpha \in \overline{\mathbb{Q}}$ and suppose $0<|\alpha|<\rho$. Is $f(\alpha)$ transcendental?

A bizarre function

There exist non-algebraic $f \in \mathbb{Q}[[z]]$ with $\rho=\infty$ such that

$$
f(\alpha) \in \overline{\mathbb{Q}} \text { for all } \alpha \in \overline{\mathbb{Q}}
$$

Idea of construction:
Enumerate the elements of $\mathbb{Z}[z]$ by P_{1}, P_{2}, \ldots and consider

$$
f(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} P_{1}(z) \cdots P_{k}(z)
$$

where $c_{k} \in \mathbb{Q}$ are chosen such that the resulting f has infinite radius of convergence.
Most of the following (and much more!) can be found in Tanguy Rivoal's survol
https://rivoal.perso.math.cnrs.fr/articles/EGxups.pdf

Lindemann-Weierstrass theorem

Around 1882 F.Lindemann proved the transcendence of π. In fact his method yielded more.

Theorem (Lindemann-Weierstrass)

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be distinct algebraic numbers. Then

$$
e^{\alpha_{1}}, e^{\alpha_{2}}, \ldots, e^{\alpha_{n}}
$$

are linearly independent over $\overline{\mathbb{Q}}$.
Application: π is transcendental.
Proof: Suppose π were algebraic. Take $\alpha_{1}=0, \alpha_{2}=\pi i$. Then Lindemann-Weierstrass implies that $1, e^{\pi i}$ are $\overline{\mathbb{Q}}$-linear independent, contradicting $e^{\pi i}=-1$.

E-function definition

Definition

An entire function $f(z)$ given by a powerseries

$$
\sum_{k=0}^{\infty} \frac{a_{k}}{k!} z^{k}
$$

with $a_{k} \in \overline{\mathbb{Q}}$ for all k, is called an E-function if
(1) $f(z)$ satisfies a linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(2) The height $H\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ is bounded by an exponential bound of the form C^{k}, where $C>0$ depends only on f.

Remark: Siegel formulated $H\left(a_{1}, \ldots, a_{k}\right)=O_{\epsilon}\left(k!^{\epsilon}\right)$ for all $\epsilon>0$ in his definition. We speak of E-functions in the broad sense in that case.

E-function examples

$$
\begin{aligned}
\exp (a z) & =\sum_{k=0}^{\infty} \frac{a^{k} z^{k}}{k!}, a \in \overline{\mathbb{Q}}^{\times} \\
J_{0}\left(-z^{2}\right) & =\sum_{k=0}^{\infty} \frac{z^{2 k}}{k!k!}=\sum_{k \geq 0}\binom{2 k}{k} \frac{z^{2 k}}{(2 k)!} \\
P(z) & \in \overline{\mathbb{Q}}[z] \quad \text { (trivial case) }
\end{aligned}
$$

The corresponding differential equations read

$$
\begin{array}{r}
y^{\prime}-a y=0 \\
z y^{\prime \prime}+y^{\prime}-4 z y=0 \\
P(z) y^{\prime}-P^{\prime}(z) y=0
\end{array}
$$

Hypergeometric example

A very general example, the confluent hypergeometric series,

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{p} \\
\beta_{1}, \ldots, \beta_{q}
\end{array} \right\rvert\, z^{q+1-p}\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{p}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{q}\right)_{k} k!} z^{(q+1-p) k}
$$

where $q \geq p$ (confluence) and $\alpha_{i}, \beta_{j} \in \mathbb{Q}$ for all i, j. $(x)_{n}$ is the Pochhammer symbol defined by $x(x+1) \cdots(x+n-1)$. ${ }_{p} F_{q}$ satisfies a linear differential equation of order $q+1$.

Differential ring structure

The E-functions form a so-called differential ring. More precisely,

Proposition

Let $f(z), g(z)$ be E-functions. Then the following functions are again E-functions

- $f^{\prime}(z)$
- $f(z)+g(z)$
- $f(z) g(z)$

Theorem (Y.André)

The units in the ring of E-functions are given by $\beta e^{\alpha z}$ with $\alpha, \beta \in \overline{\mathbb{Q}}, \beta \neq 0$.

First order systems

Let L be any algebraic number field. An $n \times n$-system of first order linear differential equations over L is given by

$$
\frac{d}{d z}\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

where $A_{i j} \in L(z)$ for all i, j.
We abbreviate by

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

where A is the $n \times n$-matrix with entries $A_{i j}$.
Let $T(z)$ be the common denominator of the $A_{i j}$. The zeros of $T(z)$ are called the singularities of the system.

From equations to systems

Consider the linear n-th order differential equation

$$
y^{(n)}+p_{1} y^{(n-1)}+p_{2} y^{(n-2)}+\cdots+p_{n-1} y^{\prime}+p_{n} y=0, p_{i} \in L(z)
$$

Put

$$
y_{1}=y, y_{2}=y^{\prime}, \ldots, y_{n}=y^{(n-1)}
$$

Note that

$$
y_{1}^{\prime}=y_{2}, y_{2}^{\prime}=y_{3}, \ldots, y_{n-1}^{\prime}=y_{n} .
$$

Finally,

$$
y_{n}^{\prime}=-p_{1} y_{n}-p_{2} y_{n-1}-\ldots-p_{n} y_{1} .
$$

Rewrite as

$$
\frac{d}{d z}\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-p_{n} & -p_{n-1} & -p_{n-2} & \cdots & -p_{1}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Siegel-Shidlovskii theorem

Siegel-Shidlovskii, 1929, 1956

Let $\left(f_{1}(z), \ldots, f_{n}(z)\right)^{t}$ be a solution vector of a system of first order equations of the form

$$
\mathbf{y}^{\prime}(z)=A(z) \mathbf{y}(z)
$$

and suppose that the $f_{i}(z)$ are E-functions. Let $T(z)$ be the common denominator of the entries of $A(z)$. Let $\alpha \in \overline{\mathbb{Q}}$ and suppose $\alpha T(\alpha) \neq 0$. Then

$$
\operatorname{degtr} \underline{\mathbb{Q}}\left(f_{1}(\alpha), f_{2}(\alpha), \ldots, f_{n}(\alpha)\right)=\operatorname{degtr}_{\mathbb{C}(z)}\left(f_{1}(z), f_{2}(z), \ldots, f_{n}(z)\right)
$$

In particular, if the $f_{i}(z)$ are algebraically independent over $\mathbb{C}(z)$ then the values at $z=\alpha$ are algebraically independent over $\overline{\mathbb{Q}}$ (or \mathbb{Q}, which amounts to the same).

Algebraic relations between E-function

In the 1960's and 70's much energy has gone into showing algebraic independence of (mainly hypergeometric) E-functions. In the 1980's the tool of differential galois theory was used, which clarified very much of the earlier work.
Example of a relation:
Let $r \in \mathbb{Z}_{>1}$ be odd and consider

$$
f(z)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{r}} z^{k}
$$

Then $f\left(z^{r}\right)$ is an E-function satisfying a differential equation of order r.
A bilinear relation,

$$
\sum_{i=0}^{r-1}(-1)^{i} \times \theta^{i} f(z) \times \theta^{r-1-i} f(-z)=0
$$

where $\theta=z \frac{d}{d z}$.

Another relation

Let $r \in \mathbb{Z}_{\geq 1}$ be odd. Define

$$
f(z)=\sum_{k=0}^{\infty} \frac{(1 / 2)_{k}}{(k!)^{r}} z^{k}
$$

Then $f\left(z^{r-1}\right)$ is an E-function satisfying a differential equation of order r. The differential galois group has the form C.SO(r, \mathbb{C}). A quadratic relation,

$$
\sum_{i=0}^{r-1}(-1)^{i} \times \theta^{i} f(z) \times \theta^{r-1-i} f(z)=z f(z)^{2}
$$

where $\theta=z \frac{d}{d z}$.

Exceptional Galois groups

Consider

$$
f(z)=\sum_{k \geq 0} \frac{(1 / 14)_{k}}{(7 k)!} z^{k}
$$

Solution of 7th order differential equation. Katz showed that its Galois group equals $G_{2} \times \mathbb{Z} / 7 \mathbb{Z}$.
Some further special Galois groups for suitable parameters (Katz),

- $q=8, p=2, G=C . S L(3)$ (adjoint representation)
- $q=8, p=2, G=C .(S L(2) \times S L(2) \times S L(2))$
- $q=8, p=2, G=C .(S L(2) \times S p(4))$
- $q=8, p=2, G=C .(S L(2) \times S L(4))$
- $q=9, p=3, G=C .(S L(3) \times S L(3))$

Refining Shidlovskii

Nesterenko-Shidlovskii,1996

Let $f_{1}, f_{2}, \ldots, f_{n}$ be an E-function solution of a first order system of linear differential equations. Then there exists a finite set $S \subset \overline{\mathbb{Q}}$ such that for any algebraic number α not in S, polynomial relations over $\overline{\mathbb{Q}}$ between the values $f_{1}(\alpha), f_{2}(\alpha), \ldots, f_{n}(\alpha)$ arise from specialization of polynomial relations over $\overline{\mathbb{Q}}(z)$ of the same degree between the functions $f_{1}(z), \ldots, f_{n}(z)$.

Proof uses the Siegel-Shidlovskii method.

Theorem (FB (2006), Y.André (2014))

For the exceptional set S one can take the zero set of $z T(z)$.
Remark: André's 2014 proof also holds for E-functions in the broad sense and can be extended to discrete analogues of Siegel-Shidlovskii.

Application to linear (in)dependence

Corollary

Let $f_{1}, f_{2}, \ldots, f_{n}$ be an E-function solution of a first order system of linear differential equations with singularities given by $T(z)=0$. Let $\alpha \in \overline{\mathbb{Q}}$ with $\alpha T(\alpha) \neq 0$. Then any linear relation over $\overline{\mathbb{Q}}$ between the values $f_{1}(\alpha), f_{2}(\alpha), \ldots, f_{n}(\alpha)$ arises from specialization of a linear relation over $\overline{\mathbb{Q}}(z)$ between the functions $f_{1}(z), \ldots, f_{n}(z)$ (former question of Lang).

Corollary

In particular, $\overline{\mathbb{Q}}(z)$-linear indepence of the $f_{i}(z)$ implies $\overline{\mathbb{Q}}$-linear independence of the $f_{i}(\alpha)$ when $\alpha T(\alpha) \neq 0$.

Reduction of E-functions

Theorem (FB 2006)

Let f_{1}, \ldots, f_{n} be an E-function solution of a first order system of linear differential equations with singularities given by $T(z)=0$. Suppose they are $\overline{\mathbb{Q}}(z)$-linear independent. Then there exist E-functions $e_{1}(z), \ldots, e_{n}(z)$ and an $n \times n$-matrix $M(z)$ with entries in $\overline{\mathbb{Q}}[z]$ such that

$$
\left(\begin{array}{c}
f_{1}(z) \\
\vdots \\
f_{n}(z)
\end{array}\right)=M\left(\begin{array}{c}
e_{1}(z) \\
\vdots \\
e_{n}(z)
\end{array}\right)
$$

and where $\left(e_{1}(z), \ldots, e_{n}(z)\right)$ is vector solution of a system of n homogeneous first order equations with coefficients in $\overline{\mathbb{Q}}[z, 1 / z]$.

Dependence relations are 'trivial'

Corollary

Suppose $\alpha \in \overline{\mathbb{Q}}^{\times}$and $b_{1}, \ldots, b_{n} \in \overline{\mathbb{Q}}$. Then

$$
b_{1} f_{1}(\alpha)+b_{2} f_{2}(\alpha)+\cdots+b_{n} f_{n}(\alpha)=0
$$

if and only if $\left(b_{1}, b_{2}, \ldots, b_{n}\right) M(\alpha)=0$.
Proof: Suppose $b_{1} f_{1}(\alpha)+\cdots+b_{n} f_{n}(\alpha)=0$. Then it follows from the theorem that

$$
0=\left(b_{1}, \ldots, b_{n}\right) M(\alpha)\left(\begin{array}{c}
e_{1}(\alpha) \\
\vdots \\
e_{n}(\alpha)
\end{array}\right)
$$

Since $e_{1}(\alpha), \ldots, e_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linear independent our corollary follows.

Remarks on linear differential equations

Consider a linear differential equation

$$
q_{n} y^{(n)}+q_{n-1} y^{(n-1)}+\cdots+q_{1} y^{\prime}+q_{0} y=0
$$

where $q_{i}(z) \in \mathbb{C}[z]$ for all i.
The zeros of $q_{n}(z)$ are called the singularities of the equation, all other points are called non-singular.

Theorem, Cauchy

Suppose $a \in \mathbb{C}$ is a non-singular point. Then the solutions of the equation in $\mathbb{C}[[z-a]]$ form an n-dimensional \mathbb{C}-vector space.
Furthermore there is an isomorphism of this space with \mathbb{C}^{n} given by

$$
y(z) \mapsto\left(y(a), y^{\prime}(a), y^{\prime \prime}(a), \ldots, y^{(n-1)}(a)\right)
$$

Finally, the solutions in $\mathbb{C}[[z-a]]$ all have positive radius of convergence.

Apparent singular points

- It may happen that there exists a basis of solutions in $\mathbb{C}[[z-a]]$ but a is a singularity. In that case we call a an apparent singularity.
- For example, if all solutions around $z=a$ have a zero a then a is an apparent singularity.
In particular $y \mapsto\left(y(a), y^{\prime}(a), \ldots, y^{(n-1)}(a)\right)$ is not bijective any more.

Some more remarks

We abbreviate our equation

$$
q_{n} y^{(n)}+q_{n-1} y^{(n-1)}+\cdots+q_{1} y^{\prime}+q_{0} y=0
$$

with $q_{i}(z) \in \mathbb{C}(z)$ by

$$
L y=0
$$

where $L \in \mathbb{C}(z)[d / d z]$ denotes the corresponding linear differential operator.
Let f be a function which satisfies a linear differential equation with coefficients in $\mathbb{C}(z)$. A minimal differential equation for f is an equation of smallest possible order satisfied by f.

Proposition

Let $L y=0$ be a mimimal differential equation for f. Then for any differential equation $L_{1} y=0$ satisfied by f there exists a differential operator L_{2} such that $L_{1}=L_{2} \circ L$.

A miraculous theorem

Theorem, Y.André (2000)

Let $f(z)$ be an E-function. Then $f(z)$ satisfies a differential equation of the form

$$
z^{m} y^{(m)}+\sum_{k=0}^{m-1} q_{k}(z) y^{(k)}=0
$$

where $q_{k}(z) \in \overline{\mathbb{Q}}[z]$ for all k.

- The equation from André's theorem need not be the minimal equation of $f(z)$.
- For example, the function $(z-1) e^{z}$ is an E-function, and its minimal differential equation reads $(z-1) f^{\prime}=z f$. So we have a singularity at $z=1$. The equation refered to in André's theorem might be $f^{\prime \prime}-2 f^{\prime}+f=0$.

A consequence

Corollary, Y.André 2000

Let f be an E-function with rational coefficients. Suppose that $f(1)=0$. Then the minimal differential equation of f has an apparent singularity at $z=1$.

The simplest example is again $f=(z-1) e^{z}$, an E-function which vanishes at $z=1$. Its minimal differential equation is $(z-1) f^{\prime}=z f$.

Proof of André's corollary

Proof. Consider $f(z) /(1-z)$. We will show that it is an E-function again. It is certainly an entire analytic function. Suppose that

$$
f(z)=\sum_{r \geq 0} \frac{f_{r}}{r!} z^{r}, \quad f_{r} \in \mathbb{Q}
$$

Then the power series of $f(z) /(1-z)$ reads

$$
\frac{f(z)}{1-z}=\sum_{r \geq 0} \frac{g_{r}}{r!} z^{r}
$$

where

$$
g_{r}=r!\sum_{k=0}^{r} \frac{f_{k}}{k!} .
$$

Suppose that the common denominator of f_{0}, \ldots, f_{r} and the sizes $\left|f_{r}\right|$ are bounded by C^{r} for some $C>0$. Then clearly the common denominators of g_{0}, \ldots, g_{r} are again bounded by C^{r}.

End of proof

Recall

$$
g_{r}=r!\sum_{k=0}^{r} \frac{f_{k}}{k!} .
$$

To estimate the size of $\left|g_{r}\right|$ we use the fact that $0=f(1)=\sum_{k \geq 0} f_{k} / k!$. More precisely,

$$
\begin{aligned}
\left|g_{r}\right| & =\left|-r!\sum_{k>r} f_{k} / k!\right| \\
& \leq \sum_{k>r}\left|f_{k}\right| /(k-r)! \\
& \leq \sum_{k>r} C^{k} /(k-r)!<C^{r} e^{C}
\end{aligned}
$$

So $\left|g_{r}\right|$ is exponentially bounded in r. Hence $f(z) /(1-z)$ is an E-function.

Final touch

- Notice that this argument only works if $f(z)$ is an E-function with rational coefficients, i.e. in \mathbb{Q}.
- By André's theorem $f(z) /(1-z)$ satisfies a differential equation without singularity at $z=1$.
- Hence its minimal differential equation has a full solution space V of analytic solutions at $z=1$.
- The solutions of the minimal equation of $f(z)$ can be found by multiplying the elements from V by $z-1$.
- This means that the minimal equation for $f(z)$ has a full space of analytic solutions all vanishing at $z=1$.
- So $z=1$ is apparent singularity.

Generalizing André's corollary

Using a combination of André's theorem and some differential galois theory one can prove the following result.

Theorem, FB (2006)

Let $f(z)$ be an E-function with coefficients in $\overline{\mathbb{Q}}$. Suppose that $f(1)=0$. Then 1 is an apparent singularity of the minimal differential equation satisfied by f.

Another proof of Lindemann-Weierstrass

Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct algebraic numbers. Suppose there exist b_{1}, \ldots, b_{n} not all zero, such that

$$
b_{1} e^{\alpha_{1}}+\cdots+b_{n} e^{\alpha_{n}}=0
$$

Let us assume $b_{i} \neq 0$ for all i.

- Define

$$
F(z)=b_{1} e^{\alpha_{1} z}+\cdots+b_{n} e^{\alpha_{n} z}
$$

- Then $F(z)$ is an E-function with $F(1)=0$. Hence the minimal differential equation for $F(z)$ has a singular point at $z=1$.
- The minimal equation is given by

$$
\left(D-\alpha_{1}\right)\left(D-\alpha_{2}\right) \cdots\left(D-\alpha_{n}\right) F=0
$$

which has no singularities.

- We have a contradiction.

Thank you!

