Introduction to E-functions

Frits Beukers

Atélier E-fonctions, G-fonction et périodes
Paris, 9 Janvier 2023

Introduction to E-functions E- et G-fonctions, périodes 1/29



Let f(z) € Q[[z]] be power series in z with coefficients in Q, with
positive radius of convergence p. We assume f(z) is not algebraic

over Q(z).
Question

Let @ € Q and suppose 0 < |a| < p. Is f(«) transcendental?
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There exist non-algebraic f € Q[[z]] with p = oo such that
fl(a)eQforalla € Q

Idea of construction:
Enumerate the elements of Z[z] by Py, P,, ... and consider

f(z) =14 cz"Pi(z)--- Pu(2)
k=1

where ¢, € Q are chosen such that the resulting 7 has infinite
radius of convergence.

Most of the following (and much more!) can be found in Tanguy
Rivoal’s survol

https://rivoal.perso.math.cnrs.fr/articles/EGxups.pdf

Introduction to E-functions E- et G-fonctions, périodes 3/29



Around 1882 F.Lindemann proved the transcendence of 7. In fact
his method yielded more.

Theorem (Lindemann-Weierstrass)
Let a3, ap, ..., a, be distinct algebraic numbers. Then

(6% @ (0%
eM, e, ..., e

are linearly independent over Q.

Application: 7 is transcendental.

Proof: Suppose 7 were algebraic. Take vy = 0, ap = 7i. Then
Lindemann-Weierstrass implies that 1, e™ are Q-linear
independent, contradicting e™ = —1.

Introduction to E-functions E- et G-fonctions, périodes 4/29



Definition

An entire function f(z) given by a powerseries
oo
2. =
k!
k=

with ax € Q for all k, is called an E-function if
© f(z) satisfies a linear differential equation with coefficients in
Q(2).
@ The height H(ao, a1, ..., ak) is bounded by an exponential
bound of the form C¥, where C > 0 depends only on f.

Remark: Siegel formulated H(ai,...,ax) = Oc(k!¢) for all ¢ >0
in his definition. We speak of E-functions in the broad sense in
that case.
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E-function examples

exp(az) = Z T ,aGQ

2y > z_2k B 2k\ z2k
b(=2) = par k_§)<k>(2k)!
P(z) € Q[z] (trivial case)

The corresponding differential equations read

y'—ay = 0
o 4y —dzy =
P(z)y’ = P'(z)y =
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A very general example, the confluent hypergeometric series,

Oél,...,Oép
F (
plq

51)"'7617

S9+1-p ) _ S (a)i- - (ap)k Sa+1-p)k
) kz%(ﬁl)k'“(ﬁq)kk!

where g > p (confluence) and «;, 3; € Q for all 7.
(x)n is the Pochhammer symbol defined by x(x+1)---(x+n—1).
pFq satisfies a linear differential equation of order g + 1.
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The E-functions form a so-called differential ring. More precisely,
Proposition

Let (z), g(z) be E-functions. Then the following functions are
again E-functions

e f'(2)
o f(z)+g(z)
o f(z)g(2)

Theorem (Y.André)

The units in the ring of E-functions are given by Se®* with

a,8€Q, B #0.
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Let L be any algebraic number field. An n x n-system of first order
linear differential equations over L is given by

yi I Auin A - A\ [(n
d || v5 B Ay Axn - Aoy ¥2
dz || [ [ : :
Yn y,/1 Anl An2 e Ann Yn

where Aj; € L(z) for all 7.
We abbreviate by
/
y =Ay
where A is the n x n-matrix with entries Aj;.

Let T(z)be the common denominator of the Aj;. The zeros of
T(z) are called the singularities of the system.
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Consider the linear n-th order differential equation

Y 4+ iy 4 oy g p 1y o+ pay = 0, pi € L(2)

Put
n=y. 2=y, ..., ya=ylr
Note that
VI=Y2, Ys=Y3, o Yno1=Yn:
Finally,
Y = —P1Yn — P2Yn-1 — - -- — PnY1-
Rewrite as
V1 0 1 0 0 yi
d |y 0 0 1 0 y2
dz ||| : : : :
Y —Pn —Pn-1 —Pn—2 - —p1) \Un
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Siegel-Shidlovskii, 1929, 1956

Let (f1(2),...,f(2))" be a solution vector of a system of first
order equations of the form

and suppose that the f;(z) are E-functions. Let T(z) be the
common denominator of the entries of A(z). Let o € Q and
suppose a T () # 0. Then

degtrg(fi(a), fo(a), ..., fa(a)) = degtre(,)(f(2), f2(2), - - -, fa(2))

In particular, if the fj(z) are algebraically independent over C(z)
then the values at z = « are algebraically independent over Q (or
@, which amounts to the same).
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In the 1960's and 70's much energy has gone into showing
algebraic independence of (mainly hypergeometric) E-functions.
In the 1980's the tool of differential galois theory was used, which
clarified very much of the earlier work.
Example of a relation:
Let r € Z~1 be odd and consider

= 1

Z) = Zk.

Then f(z") is an E-function satisfying a differential equation of

order r.

A bilinear relation,
r—1
D (1) x 0'f(z) x 01 F(—2) =0,
i=0

where 6 = zdi.
Z
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Let r € Z>1 be odd. Define

Z kl)f
k=0

Then f(z"1) is an E-function satisfying a differential equation of
order r. The differential galois group has the form C.SO(r,C).
A quadratic relation,

i(—n" x 0'f(z) x 071 F(2) = zf(2)?,

i=0

where 0 = zdi.
4
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Consider

e (/18
f(z) = Z (7h)! z".
k>0
Solution of 7th order differential equation. Katz showed that its
Galois group equals Gy x Z/77Z.
Some further special Galois groups for suitable parameters (Katz),

@ g=28,p=2,G = C.S5L(3) (adjoint representation)

@ g=28,p=2,G = C.(S5L(2) x SL(2) x 5L(2))
@ g=8,p=2,G = C.(SL(2) x Sp(4))
@ g=8,p=2,G=C.(SL(2) x SL(4))
@ g=9,p=3,G = C.(SL(3) x SL(3))
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Nesterenko-Shidlovskii,1996

Let f1,7f,...,f, be an E-function solution of a first order system of
linear differential equations. Then there exists a finite set S C Q
such that for any algebraic number o not in S, polynomial

relations over Q between the values f(a), (), ..., f,(a) arise
from specialization of polynomial relations over Q(z) of the same
degree between the functions fi(z), ..., f(z).

Proof uses the Siegel-Shidlovskii method.
Theorem (FB (2006), Y.André (2014))

For the exceptional set S one can take the zero set of zT(z).

Remark: André’'s 2014 proof also holds for E-functions in the
broad sense and can be extended to discrete analogues of
Siegel-Shidlovskii.
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Corollary

Let f1, f2, ..., f, be an E-function solution of a first order system of
linear differential equations with singularities given by T(z) = 0.
Let o € Q with aT(a) # 0. Then any linear relation over Q
between the values fi(«), f2(«), ..., f,(«) arises from specialization

of a linear relation over Q(z) between the functions
fi(z),...,fa(z) (former question of Lang).

Corollary

In particular, Q(z)-linear indepence of the f;(z) implies Q-linear
independence of the f;(«) when a T («) # 0.
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Theorem (FB 2006)

Let f1,...,f, be an E-function solution of a first order system of
linear differential equations with singularities given by T(z) = 0.
Suppose they are Q(z)-linear independent. Then there exist

E-functions e1(z),...,es(z) and an n x n-matrix M(z) with
entries in Q[z] such that
f(z) ei1(2)
: =M :
fn(2) en(2)
and where (e1(z),. .., en(z)) is vector solution of a system of n

homogeneous first order equations with coefficients in Q[z,1/z].
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Corollary

Suppose @ € Q~ and by, ..., b, € Q. Then
bifi(a) + bofa(r) + - - - + bpfp(a) =0
if and only if (b1, bo, ..., by)M(a) = 0.

Proof: Suppose bifi(a) + -+ + byfa(ar) = 0. Then it follows from
the theorem that

er(a)
0= (b1,...,bn)M(cx) :
en(c)
Since e1(a), ..., en(c) are Q-linear independent our corollary

follows.
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Consider a linear differential equation
Gny™ + g1y 4 iy + qoy = 0

where g;(z) € C[z] for all i.
The zeros of g,(z) are called the singularities of the equation, all
other points are called non-singular.

Theorem, Cauchy

Suppose a € C is a non-singular point. Then the solutions of the
equation in C[[z — a]] form an n-dimensional C-vector space.
Furthermore there is an isomorphism of this space with C"” given by

y(@) = (v(a),¥'(a),y"(a), ... y'"D(a)).

Finally, the solutions in C[[z — a]] all have positive radius of
convergence.
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@ It may happen that there exists a basis of solutions in
C[[z — a]] but a is a singularity. In that case we call a an
apparent singularity.

@ For example, if all solutions around z = a have a zero a then a
is an apparent singularity.
In particular y — (y(a),y(a),...,y(""1(a)) is not bijective
any more.
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We abbreviate our equation

oy + @n-1y" D 4+ gy + qoy =0

with gj(z) € C(z) by

Ly =0
where L € C(z)[d/dz] denotes the corresponding linear differential
operator.
Let f be a function which satisfies a linear differential equation
with coefficients in C(z). A minimal differential equation for f is
an equation of smallest possible order satisfied by f.

Proposition

Let Ly = 0 be a mimimal differential equation for f. Then for any
differential equation L1y = O satisfied by f there exists a
differential operator L, such that L1 = Lo L.
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Theorem, Y.André (2000)

Let f(z) be an E-function. Then f(z) satisfies a differential
equation of the form

where qx(z) € Q[z] for all k.

@ The equation from André’s theorem need not be the minimal
equation of f(z).

@ For example, the function (z — 1)e” is an E-function, and its
minimal differential equation reads (z — 1)f’ = zf. So we
have a singularity at z = 1. The equation refered to in
André’s theorem might be " — 2f" 4+ f = 0.
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Corollary, Y.André 2000

Let f be an E-function with rational coefficients. Suppose that
f(1) = 0. Then the minimal differential equation of f has an
apparent singularity at z = 1.

The simplest example is again f = (z — 1)e?, an E-function which
vanishes at z = 1. Its minimal differential equation is
(z—1)f" = zf.
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Proof. Consider f(z)/(1 — z). We will show that it is an
E-function again. It is certainly an entire analytic function.
Suppose that

r>0

Then the power series of f(z)/(1 — z) reads

f(z) _ N8,
1-2z rl
r>0
where
r f-k
g =r! Z Pk
k=0
Suppose that the common denominator of fy, ..., f, and the sizes
|f;| are bounded by C" for some C > 0. Then clearly the common
denominators of gp, ..., g, are again bounded by C".
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Recall

To estimate the size of |g,| we use the fact that
0= f(1) = > 4>0 fk/k!. More precisely,

’gr| = ‘r!sz/k!

k>r
< I/ (k=)
k>r
< Y k=< cre€
k>r

So |gr| is exponentially bounded in r. Hence f(z)/(1 — z) is an
E-function.
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o Notice that this argument only works if f(z) is an E-function
with rational coefficients, i.e. in Q.

@ By André’s theorem f(z)/(1 — z) satisfies a differential
equation without singularity at z = 1.

@ Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

@ The solutions of the minimal equation of f(z) can be found
by multiplying the elements from V by z — 1.

@ This means that the minimal equation for f(z) has a full
space of analytic solutions all vanishing at z = 1.

@ So z =1 is apparent singularity.
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Using a combination of André’s theorem and some differential
galois theory one can prove the following result.

Theorem, FB (2006)

Let f(z) be an E-function with coefficients in Q. Suppose that
f(1) = 0. Then 1 is an apparent singularity of the minimal
differential equation satisfied by f.

Introduction to E-functions E- et G-fonctions, périodes 27 /29



Let a1,...,a, be distinct algebraic numbers. Suppose there exist
bi,..., b, not all zero, such that

b1e*t 4+ .- 4+ bpe* = 0.

Let us assume b; # 0 for all i.

@ Define
F(z) = bie™? + - + b,e*?.

@ Then F(z) is an E-function with F(1) = 0. Hence the minimal
differential equation for F(z) has a singular point at z = 1.

@ The minimal equation is given by
(D—a1)(D—-a)---(D—a,)F=0

which has no singularities.
@ We have a contradiction.
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Thank you!
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