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Viewpoints on linear differential equations

ar (x)·y (r) + ar−1(x)·y (r−1) + · · ·+ a1(x)·y ′ + a0(x)·y = 0

Differential operators

L = ar∂
r + · · ·+ a1∂ + a0 ∈ k(x)⟨∂⟩

L(y) = 0

Differential systems

Y ∈ k(x)r , A ∈ Mr

(
k(x)

)
Y ′ + AY = 0

Modules with connections
M vector space over k(x)
∂ : M → M such that
∂(fm) = f ′m + f ∂(m)



Some examples

☞ y ′ − y = 0 y = ex

☞ x ·y ′ − n·y = 0 y = xn

☞ x(x−1)·y ′′ +
(
c − (a+b+1)x

)
·y ′ − ab·y = 0

∞∑
n=0

(a)n(b)n
(c)nn!

xn

☞ (x∂ − α1) · · · (x∂ − αn)− x(x∂ − β1) · · · (x∂ − βn)
∞∑
n=0

(α1)n · · · (αn)n
(β1 + 1)n · · · (βn + 1)n

xn

Theorem (Beukers-Heckmann)
The above differential equation has a basis of algebraic solutions iff:

☞ the αi and the βj are 2n distinct elements of Q/Z,
☞ for all r , the sets Ar = {rα1, . . . , rαn} and

Br = {rβ1, . . . , rβn} are intertwined in Q/Z.



Viewpoints on linear differential equations

ar (x)·y (r) + ar−1(x)·y (r−1) + · · ·+ a1(x)·y ′ + a0(x)·y = 0

p-curvature

∂p mod L

Differential operators

L = ar∂
r + · · ·+ a1∂ + a0 ∈ k(x)⟨∂⟩

L(y) = 0

p-curvature

Ap avec :
A1 = A

Ai+1 = A′
i + AAi

Differential systems

Y ∈ k(x)r , A ∈ Mr

(
k(x)

)
Y ′ + AY = 0

p-curvature

∂p : M → M
∂p(fm) = f (p)m + f ∂p(x) = f ∂p(m)

Modules with connections
M vector space over k(x)
∂ : M → M such that
∂(fm) = f ′m + f ∂(m)



p-curvature and solutions

Theorem (Cartier)

dimension of the spaces of solutions
= dimension of the kernel of the p-curvature

over the subfield of constants

over k(x)



p-curvature and solutions

Theorem (Cartier)

dimension of the spaces of rational solutions
= dimension of the kernel of the p-curvature

over the subfield of constants

over k(x)



p-curvature and solutions

Theorem (Cartier)

dimension of the spaces of algebraic solutions
= dimension of the kernel of the p-curvature

over the subfield of constants

over k(x)



p-curvature and solutions

Theorem (Cartier)

dimension of the spaces of series solutions
= dimension of the kernel of the p-curvature

over the subfield of constants

over k(x)



p-curvature and solutions

Theorem (Cartier)

dimension of the spaces of series solutions
= dimension of the kernel of the p-curvature

over the subfield of constants

over k(x)

(M, ∂) module with connection
dimk(xp) ker ∂ = dimk(x) ker ∂

p

ker ∂p = k(x)⊗k(xp) ker ∂

Y ′ + AY = 0 with Y = Y0 + Y1x + Y2x
2 + · · ·

Recurrence: nYn = fn(Y0, . . . ,Yn−1)

Necessary condition to the existence of solutions:
fp(Y0, . . . ,Yp−1) = 0



Grothendieck conjecture

Let L ∈ Q(x)⟨∂⟩.
The differential equation L(y) = 0
has a basis of algebraic solutions

iff the p-curvature of L mod p

vanishes for almost all prime p

∂p ≡ 0 (mod L, p)

Katz Conjecture

The p-curvatures
are dense in
the Lie algebra
of the Galois group

Let L ∈ Q[X ] separable.

The polynomial L splits over Q
iff the polynomial L mod p

splits over Fp for almost all prime p

X p ≡ X (mod L, p)

Chebotarev
Every element of
the Galois group
is a Frobenius
at some p



Naive computation of the p-curvature

Reminder
The p-curvature of Y ′ = AY is Ap with

A1 = A

Ai+1 = A′
i + AAi

First order
The p-curvature of y ′ = a(x)y is

−dp−1a(x)

dp−1x
− a(x)p

In general
The recurrence gives an algorithm with complexity Õ(drωp2)

To be compared with the size of Ap which is O(dr2p)



Fast computation of the p-curvature

Y ′ + AY = 0 with Y = Y0 + Y1x + Y2x
2 + · · ·

Recurrence: nYn = fn(Y0, . . . ,Yn−1)

Necessary condition to the existence of solutions:
fp(Y0, . . . ,Yp−1) = 0

k[[x ]]dp =

{
f (x) =

∞∑
i=0

ci
x i

i !
, ci ∈ k

}
xp = 0 in k[[x ]]dp

Proposition
Let A ∈ Mr

(
k(x)

)
with no pole at 0.

The differential system Y ′ = AY admits
a fundamental system of solutions over k[[x ]]dp



Fast computation of the p-curvature (cont.)

Observation
Let A ∈ Mr

(
k(x)

)
with no pole at 0.

For all solution Y = Y0 + Y1x + Y2
x2

2! + · · ·+ Yp
xp

p! + · · ·
of Y ′ = AY ,
we have ApY0 = −Yp in k[x ]/xp

Corollary (Bostan, C., Schost)
There exists an algorithm that compute the p-curvature
in complexity Õ(drωp)

There exists an algorithm that compute the
the similarity invariant of the p-curvature
in complexity Õ

(
dω+ 3

2 rω+1√p
)

Method
Use the theorem to compute Ap mod (x−a)p for enough values of a



The characteristic polynomial of the p-curvature

We introduce the Euler operator θ = x∂

k[x ]⟨∂⟩ k[θ]⟨x±1⟩
[
xθ = (θ−1)x

]
∂ x−1θ

L R

A ∈ Mr

(
k(x)

)
⇝ Ap

B ∈ Ms

(
k(θ)

)
⇝ Bp = B(θ) B(θ+1) · · ·B(θ+p−1)

Renormalized characteristic polynomials

det(T−Ap) · ar (x)pP(T , xp) =

det(T−Bp) · bs(θ) bs(θ+1) · · · bs(θ+p−1)Q(T , θp−θ) =

Theorem (Bostan, C., Schost)
We have P(T ,U) = Q(U,TU)

There exists an algorithm that computes det(T−Ap)
in complexity Õ

(
d (d+r)ω

√
p
)



Example: hypergeometric operators

H(α1, . . . , αn;β1, . . . , βn)

= (x∂−α1) · · · (x∂−αn)− x(x∂−β1) · · · (x∂−βn)

= (θ−α1) · · · (θ−αn)− x ·(θ−β1) · · · (θ−βn)

More generally, consider H(α;β) = α(θ)− x ·β(θ)

B =
(
α(θ)
β(θ)

)
; Bp =

(
α(θ) α(θ+1)···α(θ+p−1)
β(θ) β(θ+1)···β(θ+p−1)

)
Q(T , θp−θ)

= det(T−Bp) · β(θ) β(θ+1) · · ·β(θ+p−1)
= β(θ) β(θ+1) · · ·β(θ+p−1) · T

− α(θ) α(θ+1) · · ·α(θ+p−1)

We retrieve P(T , xp) ∝ det(T−Ap)
after the changes of variables T ⇝ xp and θp−θ ⇝ xpT



∂=0
cMerci pourbure

votre attention


