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Viewpoints on linear differential equations

ar(X).y(r) + ar—l(X)'y(r_l) _|_ e + al(X).y, + aO(X)'y = O

Differential operators

L=ad" +---+ a0+ ap € k(x)(0)

L(y)=0

Differential systems Modules with connections
Y € k(x)", A€ M, (k(x)) M vector space over k(x)
Y +AY =0 0: M — M such that

A(fm) = f'm + fO(m)




Some examples

= y/ —y = 0 y= .

= x-y' —ny =0 y = x"
— (2)n(b)n

= x(x=1)y" + (¢ = (a+b+1)x)y' — aby =0 (2)(”). X"
n=0 J

= (x0 —a1) -+ (x0 — ap) — x(x0 — P1) -+ (x0 — Bn)

Z ( (@1)n - (an)n X"

—0 531 + l)n o (ﬁn + 1)n

Theorem (Beukers-Heckmann)
The above differential equation has a basis of algebraic solutions iff:
w5 the o and the f; are 2n distinct elements of Q/Z,

v for all r, the sets A, = {rau, ..., ra,} and
B, ={rp1,...,rBs} are intertwined in Q/Z.



Viewpoints on linear differential equations

ar(X).y(r) -+ ar_l(x).y(r_l) 4+ 4 al(x).y/ + aO(X).y =0

Differential operators
L=2a 0"+ -4 a10+ ap € k(x)(9)

p-curvature

N

L(y)=0 0P mod L
Differential systems Modules with connections
Y € k(x)", A€ M, (k(x)) M vector space over k(x)
Y'+AY =0 0: M — M such that

A(fm) = f'm + fO(m)
p-curvature

Ap avec : p-curvature

A=A o°P-M—-M
A1 = Al + AA; OP(fm) = FP)m + FOP(x) = FOP(m)




p-curvature and solutions

Theorem (Cartier)

over the subfield of constants
dimension'of the spaces of solutions

= dimension,of the kernel of the p-curvature

over k(x)



p-curvature and solutions

Theorem (Cartier)

over the subfield of constants
dimension'of the spaces of rational solutions

= dimension,of the kernel of the p-curvature

over k(x)



p-curvature and solutions

Theorem (Cartier)

over the subfield of constants
dimensionof the spaces of algebraic solutions

= dimension,of the kernel of the p-curvature

over k(x)



p-curvature and solutions

Theorem (Cartier)

over the subfield of constants
dimension'of the spaces of series solutions

= dimension,of the kernel of the p-curvature

over k(x)



p-curvature and solutions

Theorem (Cartier)

over the subfield of constants
dimension'of the spaces of series solutions

= dimension of the kernel of the p-curvature

over k(x)

(M, 9) module with connection
dimy ey ker & = dimy ) ker 9P
ker 0P = k(x) ®x(xr) ker @

Y +AY =0 with Y = Yy + Yix+ Yax? + - --
Recurrence: nY, = f,(Yo, .-, Yo-1)

Necessary condition to the existence of solutions:
fo(Yo, ..., Yp—1) =0




Grothendieck conjecture

Let L € Q(x)(0). : ~
The differential equation L(y) =0 el (S e

has a basis of algebraic solutions The p-curvatures
are dense in

the Lie algebra
of the Galois group

iff the p-curvature of L mod p
vanishes for almost all prime p

0P =0 (mod L, p) )
Let L € Q[X] separable. sty
The polynomial L splits over Q Every element of
iff the polynomial L mod p the Galois group
splits over I, for almost all prime p | is a Frobenius

XP =X (mod L, p) at some p




Naive computation of the p-curvature

Reminder

The p-curvature of Y/ = AY is A, with
A=A
A,'+1 = A: + AA;

First order
The p-curvature of y' = a(x)y is

dP~ta(x)
~ge

In general
The recurrence gives an algorithm with complexity O(dr* p?)
To be compared with the size of A, which is O(dr?p)



Fast computation of the p-curvature

Y’—{—AY:OWith Y = Y0—|— Y1X+ Y2X2+~--
Recurrence: nY, = fo(Yo,. .., Yo-1)

Necessary condition to the existence of solutions:
fo(Yo, ..., Yp—1) =0

K[[x]]% = { Fx)=> c,-);—ll, G € k}
i=0 '

xP =0 in k[[x]]¢P
Proposition
Let A € M,(k(x)) with no pole at 0.

The differential system Y’ = AY admits
a fundamental system of solutions over k[[x]]P



Fast computation of the p-curvature (cont.)

Observation

Let A € M,(k(x)) with no pole at 0.

For all solution Y = Yy + Yix + Y2>§_|_...+ Ypﬁ—i—---
of Y =AY,

we have A, Yy = =Y, in k[x]/xP

Corollary (Bostan, C., Schost)
There exists an algorithm that compute the p-curvature
in complexity O(dr“p)
There exists an algorithm that compute the
the similarity invariant of the p-curvature
~ 3
in complexity O(d“"zr*1, /p)

Method
Use the theorem to compute A, mod (x—a)P for enough values of a



The characteristic polynomial of the p-curvature

We introduce the Euler operator 6 = x0

k[x](0) —— Kk[O](xT!) [x0 = (6—1)x |
0 —— x710
L—— R
A € M, (k(x)) B € M, (k(6))
~ Ap ~» B, = B(8) B(6+1)--- B(6+p—1)

Renormalized characteristic polynomials
P(T,xP) = det(T—A,) - ar(x)P
Q(T,0P—0) = det(T—Bp) - bs(8) bs(6+1) - - - bs(60+p—1)
)
)

Theorem (Bostan, C., Schost
We have P(T,U) = Q(U, TU

There exists an algorithm that computes det(T—Ap)
in complexity O(d (d+r)*/p)



Example: hypergeometric operators

%(a17"'7an;/817"'7/8n)
= (x0—a1) -+ (xO—ay) — x(x0—PB1) - - - (xO—n)
=(0—0a1) - (0—apn) — x(0—51) - (0—5n)

More generally, consider H(a; 5) = a(0) — x-3(0)

— (e . _ [ a(0) a(0+1)a(0+p—1)
o <ﬂ(9>) - B (H(e) B+ >~ﬂw+p—1))
Q(T,0P—0)

= det(T—B,) - B(0) B(6+1) - B(6+p—1)
—5(9)6(9+1) -B(0+p— 1) T
a(f) a(6+1) - a(0+p—1)

We retrieve P(T,xP) o det(T—A))
after the changes of variables T ~» xP and 0P—6 ~» xPT



Merci pour
votre attention



