Viewpoints on the p-curvature

Xavier Caruso
University of Bordeaux

E-functions, G-functions and Periods
January 10th, 2023

Viewpoints on linear differential equations

$$
a_{r}(x) \cdot y^{(r)}+a_{r-1}(x) \cdot y^{(r-1)}+\cdots+a_{1}(x) \cdot y^{\prime}+a_{0}(x) \cdot y=0
$$

Differential operators
$L=a_{r} \partial^{r}+\cdots+a_{1} \partial+a_{0} \in k(x)\langle\partial\rangle$
$L(y)=0$

Differential systems
$Y \in k(x)^{r}, A \in M_{r}(k(x))$
$Y^{\prime}+A Y=0$

Modules with connections
M vector space over $k(x)$
$\partial: M \rightarrow M$ such that
$\partial(f m)=f^{\prime} m+f \partial(m)$

Some examples

$$
\begin{aligned}
& y^{\prime}-y=0 \\
& x \cdot y^{\prime}-n \cdot y=0 \\
& x(x-1) \cdot y^{\prime \prime}+(c-(a+b+1) x) \cdot y^{\prime}-a b \cdot y=0 e^{x} \\
& y=x^{n} \\
& \left(x \partial-\alpha_{1}\right) \cdots\left(x \partial-\alpha_{n}\right)-x\left(x \partial-\beta_{1}\right) \cdots\left(x \partial-\beta_{n}\right) \\
& \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} x^{n} \\
& \left(\beta_{1}+1\right)_{n} \cdots\left(\beta_{n}+1\right)_{n}
\end{aligned} x^{n},
$$

Theorem (Beukers-Heckmann)
The above differential equation has a basis of algebraic solutions iff:
the α_{i} and the β_{j} are $2 n$ distinct elements of \mathbb{Q} / \mathbb{Z},
for all r, the sets $A_{r}=\left\{r \alpha_{1}, \ldots, r \alpha_{n}\right\}$ and $B_{r}=\left\{r \beta_{1}, \ldots, r \beta_{n}\right\}$ are intertwined in \mathbb{Q} / \mathbb{Z}.

Viewpoints on linear differential equations

$$
a_{r}(x) \cdot y^{(r)}+a_{r-1}(x) \cdot y^{(r-1)}+\cdots+a_{1}(x) \cdot y^{\prime}+a_{0}(x) \cdot y=0
$$

Differential operators

$L=a_{r} \partial^{r}+\cdots+a_{1} \partial+a_{0} \in k(x)\langle\partial\rangle$ $L(y)=0$
p-curvature $\partial^{p} \bmod L$

Differential systems

$Y \in k(x)^{r}, A \in M_{r}(k(x))$
$Y^{\prime}+A Y=0$
p-curvature
A_{p} avec:
$A_{1}=A$
$A_{i+1}=A_{i}^{\prime}+A A_{i}$

Modules with connections
M vector space over $k(x)$
$\partial: M \rightarrow M$ such that
$\partial(f m)=f^{\prime} m+f \partial(m)$
p-curvature
$\partial^{p}: M \rightarrow M$
$\partial^{p}(f m)=f^{(p)} m+f \partial^{p}(x)=f \partial^{p}(m)$

p-curvature and solutions

Theorem (Cartier)
$\frac{\text { over the subfield of constants }}{}$
dimension of the spaces of solutions
$=$ dimension of the kernel of the p-curvature

$$
\text { over } k(x)
$$

p-curvature and solutions

Theorem (Cartier)

$$
\begin{aligned}
& \text { over the subfield of constants } \\
& \text { dimension of the spaces of rational solutions }
\end{aligned}
$$

$=$ dimension of the kernel of the p-curvature

$$
\text { over } k(x)
$$

p-curvature and solutions

Theorem (Cartier)
over the subfield of constants dimension of the spaces of algebraic solutions
$=$ dimension of the kernel of the p-curvature

$$
\text { over } k(x)
$$

p-curvature and solutions

Theorem (Cartier)

$$
\begin{aligned}
& \text { over the subfield of constants } \\
& \text { dimension of the spaces of series solutions }
\end{aligned}
$$

$$
=\text { dimension of the kernel of the } p \text {-curvature }
$$

$$
\text { over } k(x)
$$

p-curvature and solutions

Theorem (Cartier)

> over the subfield of constants
dimension of the spaces of series solutions
$=$ dimension of the kernel of the p-curvature

$$
\text { over } k(x)
$$

(M, ∂) module with connection $\operatorname{dim}_{k\left(x^{p}\right)} \operatorname{ker} \partial=\operatorname{dim}_{k(x)} \operatorname{ker} \partial^{p}$ $\operatorname{ker} \partial^{p}=k(x) \otimes_{k\left(x^{p}\right)} \operatorname{ker} \partial$

$$
\begin{aligned}
& Y^{\prime}+A Y=0 \text { with } Y=Y_{0}+Y_{1} x+Y_{2} x^{2}+\cdots \\
& \text { Recurrence: } n Y_{n}=f_{n}\left(Y_{0}, \ldots, Y_{n-1}\right)
\end{aligned}
$$

Necessary condition to the existence of solutions:

$$
f_{p}\left(Y_{0}, \ldots, Y_{p-1}\right)=0
$$

Grothendieck conjecture

Let $L \in \mathbb{Q}(x)\langle\partial\rangle$.
The differential equation $L(y)=0$ has a basis of algebraic solutions
iff the p-curvature of $L \bmod p$ vanishes for almost all prime p

$$
\partial^{p} \equiv 0(\bmod L, p)
$$

Let $L \in \mathbb{Q}[X]$ separable.
The polynomial L splits over \mathbb{Q}
iff the polynomial $L \bmod p$ splits over \mathbb{F}_{p} for almost all prime p

$$
X^{p} \equiv X(\bmod L, p)
$$

Katz Conjecture

The p-curvatures
are dense in
the Lie algebra
of the Galois group

Chebotarev
Every element of the Galois group is a Frobenius
at some p

Naive computation of the p-curvature

Reminder

The p-curvature of $Y^{\prime}=A Y$ is A_{p} with

$$
\begin{aligned}
& A_{1}=A \\
& A_{i+1}=A_{i}^{\prime}+A A_{i}
\end{aligned}
$$

First order
The p-curvature of $y^{\prime}=a(x) y$ is

$$
-\frac{d^{p-1} a(x)}{d^{p-1} x}-a(x)^{p}
$$

In general
The recurrence gives an algorithm with complexity $\tilde{O}\left(d r^{\omega} p^{2}\right)$
To be compared with the size of A_{p} which is $O\left(d r^{2} p\right)$

Fast computation of the p-curvature

$$
\begin{aligned}
& Y^{\prime}+A Y=0 \text { with } Y=Y_{0}+Y_{1} x+Y_{2} x^{2}+\cdots \\
& \text { Recurrence: } n Y_{n}=f_{n}\left(Y_{0}, \ldots, Y_{n-1}\right)
\end{aligned}
$$

Necessary condition to the existence of solutions:

$$
f_{p}\left(Y_{0}, \ldots, Y_{p-1}\right)=0
$$

$$
\begin{aligned}
k[[x]]^{\mathrm{dp}}=\left\{f(x)=\sum_{i=0}^{\infty} c_{i} \frac{x^{i}}{i!}, c_{i} \in k\right\} & \\
& x^{p}=0 \text { in } k[[x]]^{\mathrm{dp}}
\end{aligned}
$$

Proposition

Let $A \in M_{r}(k(x))$ with no pole at 0 .
The differential system $Y^{\prime}=A Y$ admits
a fundamental system of solutions over $k[[x]]^{\mathrm{dp}}$

Fast computation of the p-curvature (cont.)

Observation
Let $A \in M_{r}(k(x))$ with no pole at 0 .
For all solution $Y=Y_{0}+Y_{1} x+Y_{2} \frac{x^{2}}{2!}+\cdots+Y_{p} \frac{x^{p}}{p!}+\cdots$
of $Y^{\prime}=A Y$,
we have $A_{p} Y_{0}=-Y_{p}$ in $k[x] / x^{p}$
Corollary (Bostan, C., Schost)
There exists an algorithm that compute the p-curvature in complexity $\tilde{O}\left(d r^{\omega} p\right)$
There exists an algorithm that compute the the similarity invariant of the p-curvature in complexity $\tilde{O}\left(d^{\omega+\frac{3}{2}} r^{\omega+1} \sqrt{p}\right)$

Method
Use the theorem to compute $A_{p} \bmod (x-a)^{p}$ for enough values of a

The characteristic polynomial of the p-curvature
We introduce the Euler operator $\theta=x \partial$

$$
\begin{aligned}
k[x]\langle\partial\rangle & \longrightarrow k[\theta]\left\langle x^{ \pm 1}\right\rangle \quad[x \theta=(\theta-1) x] \\
\partial & \longmapsto x^{-1} \theta \\
L & \longmapsto R \\
A \in M_{r}(k(x)) & B \in M_{s}(k(\theta)) \\
\rightsquigarrow A_{p} & \rightsquigarrow B_{p}=B(\theta) B(\theta+1) \cdots B(\theta+p-1)
\end{aligned}
$$

Renormalized characteristic polynomials

$$
\begin{aligned}
P\left(T, x^{p}\right) & =\operatorname{det}\left(T-A_{p}\right) \cdot a_{r}(x)^{p} \\
Q\left(T, \theta^{p}-\theta\right) & =\operatorname{det}\left(T-B_{p}\right) \cdot b_{s}(\theta) b_{s}(\theta+1) \cdots b_{s}(\theta+p-1)
\end{aligned}
$$

Theorem (Bostan, C., Schost)
We have $P(T, U)=Q(U, T U)$
There exists an algorithm that computes $\operatorname{det}\left(T-A_{p}\right)$ in complexity $\tilde{O}\left(d(d+r)^{\omega} \sqrt{p}\right)$

Example: hypergeometric operators

$$
\begin{aligned}
& \mathcal{H}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right) \\
& \quad=\left(x \partial-\alpha_{1}\right) \cdots\left(x \partial-\alpha_{n}\right)-x\left(x \partial-\beta_{1}\right) \cdots\left(x \partial-\beta_{n}\right) \\
& \quad=\left(\theta-\alpha_{1}\right) \cdots\left(\theta-\alpha_{n}\right)-x \cdot\left(\theta-\beta_{1}\right) \cdots\left(\theta-\beta_{n}\right)
\end{aligned}
$$

More generally, consider $\mathcal{H}(\alpha ; \beta)=\alpha(\theta)-x \cdot \beta(\theta)$

$$
\begin{aligned}
& B=\left(\frac{\alpha(\theta)}{\beta(\theta)}\right) \quad ; \quad B_{p}=\left(\frac{\alpha(\theta) \alpha(\theta+1) \cdots \alpha(\theta+p-1)}{\beta(\theta) \beta(\theta+1) \cdots \beta(\theta+p-1)}\right) \\
& Q\left(T, \theta^{p}-\theta\right) \\
& \quad=\operatorname{det}\left(T-B_{p}\right) \cdot \beta(\theta) \beta(\theta+1) \cdots \beta(\theta+p-1) \\
& =\beta(\theta) \beta(\theta+1) \cdots \beta(\theta+p-1) \cdot T
\end{aligned} \quad \begin{aligned}
& \quad-\alpha(\theta) \alpha(\theta+1) \cdots \alpha(\theta+p-1)
\end{aligned}
$$

We retrieve $P\left(T, x^{p}\right) \propto \operatorname{det}\left(T-A_{p}\right)$ after the changes of variables $T \rightsquigarrow x^{p}$ and $\theta^{p}-\theta \rightsquigarrow x^{p} T$

Merci pour votre attention

